wahrscheinlichkitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:32 Sa 26.09.2015 | Autor: | schule66 |
Aufgabe | In einer Stadt ist ca. jeder fünfte Autolenker nicht angegurtet. Ein Polizis hält hintereinander drei Autos an. Wie groß ist die Wahrscheinlichkeit, dass
a) alle drei Lenker angegurtet sind,
b) die ersten beiden Lenker angegurtet sind, der dritte jedoch nicht,
c) der erste Lenker angegurtet ist, die anderen beiden jedoch nicht,
d) keiner der drei Lenker angegurtet ist? |
meine frage zu dieser Aufgabe ist, ob ich hier jetzt mit insgesamt 15 Lenkern rechnen muss, mit 5 oder mehr. bei meinem rechenvorgang habe ich die angegurteten mit "G" und die nicht angegurteten mit "nG" abgekürzt. so bin ich vorgegangen:
a) P(GGG)= [mm] \bruch{3}{15}*\bruch{2}{14}*\bruch{1}{13}= [/mm] 0,2197...%
b) P(GGnG)= [mm] \bruch{3}{15}*\bruch{2}{14}*\bruch{12}{13}= [/mm] 2,6373...%
c) P(GnGnG)= [mm] \bruch{3}{15}*\bruch{12}{14}*\bruch{11}{13}= [/mm] 14,5054...%
d) P(nGnGnG)= [mm] \bruch{12}{15}*\bruch{11}{14}*\bruch{10}{13}= [/mm] 48,3516...%
Stimmt das so oder mache ich irgendwas falsch?
ich bin auf jede Hilfe angewiesen und bedanke mich schon im voraus!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:31 Sa 26.09.2015 | Autor: | luis52 |
Moin, leider sind deine Rechnungen ueberhaupt nicht nachvollziehbar, aber auf alle Faelle falsch.
Bei a) musst du so rechnen: [mm] $P(GGG)=0.8\cdot 0.8\cdot0.8=0.512$ [/mm] (Unabhaengigkeit vorausgesetzt).
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:20 Sa 26.09.2015 | Autor: | M.Rex |
Hallo
> In einer Stadt ist ca. jeder fünfte Autolenker nicht
> angegurtet.
Und hier steckt doch die Wahrscneinlichkeit für einen nicht angegurteten Fahrer drin, nämlich [mm] \frac{1}{5}
[/mm]
Damit sind [mm] \frac{4}{5} [/mm] der Fahrer angegurtet
> Ein Polizis hält hintereinander drei Autos an.
> Wie groß ist die Wahrscheinlichkeit, dass
> a) alle drei Lenker angegurtet sind,
> b) die ersten beiden Lenker angegurtet sind, der dritte
> jedoch nicht,
> c) der erste Lenker angegurtet ist, die anderen beiden
> jedoch nicht,
> d) keiner der drei Lenker angegurtet ist?
> meine frage zu dieser Aufgabe ist, ob ich hier jetzt mit
> insgesamt 15 Lenkern rechnen muss, mit 5 oder mehr. bei
> meinem rechenvorgang habe ich die angegurteten mit "G" und
> die nicht angegurteten mit "nG" abgekürzt. so bin ich
> vorgegangen:
> a) P(GGG)= [mm]\bruch{3}{15}*\bruch{2}{14}*\bruch{1}{13}=[/mm]
> 0,2197...%
> b) P(GGnG)= [mm]\bruch{3}{15}*\bruch{2}{14}*\bruch{12}{13}=[/mm]
> 2,6373...%
> c) P(GnGnG)= [mm]\bruch{3}{15}*\bruch{12}{14}*\bruch{11}{13}=[/mm]
> 14,5054...%
> d) P(nGnGnG)=
> [mm]\bruch{12}{15}*\bruch{11}{14}*\bruch{10}{13}=[/mm] 48,3516...%
>
> Stimmt das so oder mache ich irgendwas falsch?
Und du gehst von ziehen ohne Zurücklegen aus, aber dieses Experiment ist als mit Zurücklegen anzusehen, denn ob der Fahrer angegurtet ist oder nicht, ist unabhängig vom vorher kontrollierten Fahrer.
Lies dir unebdingt mal das Kapitel zur Wahrscheinlichkeitsrechnung an, eine bessere Zusammenfassung der Wahrscheinlichkeitsrechnung für die Schule findest du kaum. Aber auch die anderen Kapitel sind super.
Marius
|
|
|
|