matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrasymmetrische gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - symmetrische gruppen
symmetrische gruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

symmetrische gruppen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:32 So 27.11.2005
Autor: bobby

Hallo!

Ich habe ein Problem mit der folgenden Aufgabe:

Bestimme alle n [mm] \in \IN, [/mm] so dass es einen n-Zyklus in der symmetrischen Gruppe [mm] S_{4} [/mm] gibt. Gib für jedes mögliche n ein Beispiel an.
Außerdem bestimme einen Homomorphismus mit möglichst kleinem Kern von [mm] S_{4} [/mm] nach [mm] (\IZ_{2},+). (S_{4} [/mm] ist als Transpositionsprodukt darstellbar)

Also die Elemente von [mm] S_{4} [/mm] habe ich bereits bestimmt, das sind 24.
z.B.:  [mm] \pmat{ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 } [/mm] , [mm] \pmat{1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 } [/mm] , ...
Aber ich verstehe nicht so richtig wie das mit den n-Elementen gemeint ist undfür den Homomorphismus hab ich auch keine Idee, obwohl ich weis wie das mit den Transpositionen gemeint ist:
z.B.: [mm] \pmat{ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 } [/mm] = (1 4) [mm] \circ [/mm] (2 3)
...
Vielleicht kann mir das jemand erklären???

        
Bezug
symmetrische gruppen: Hilfen
Status: (Antwort) fertig Status 
Datum: 11:24 Mo 28.11.2005
Autor: statler

Guten Tag Bobby!

> Ich habe ein Problem mit der folgenden Aufgabe:
>  
> Bestimme alle n [mm]\in \IN,[/mm] so dass es einen n-Zyklus in der
> symmetrischen Gruppe [mm]S_{4}[/mm] gibt. Gib für jedes mögliche n
> ein Beispiel an.
>  Außerdem bestimme einen Homomorphismus mit möglichst
> kleinem Kern von [mm]S_{4}[/mm] nach [mm](\IZ_{2},+). (S_{4}[/mm] ist als
> Transpositionsprodukt darstellbar)
>  
> Also die Elemente von [mm]S_{4}[/mm] habe ich bereits bestimmt, das
> sind 24.
>  z.B.:  [mm]\pmat{ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 }[/mm] , [mm]\pmat{1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 }[/mm]
> , ...
>  Aber ich verstehe nicht so richtig wie das mit den
> n-Elementen gemeint ist

Nach meinem Verständnis wäre z. B. ein 3-Zyklus so etwas:
[mm] \pmat{ 1 & 2 & 3 \\ 2 & 3 & 1 }, [/mm] manchmal auch (1 2 3) geschrieben. Eine Transposition wäre dann ein 2-Zyklus, die Identität ein 1-Zyklus, und 4-Zyklen gäbe es auch. Weil ich mir nicht komplett sicher bin, lasse ich die Frage mal auf rot-grün.

> undfür den Homomorphismus hab ich
> auch keine Idee, obwohl ich weis wie das mit den
> Transpositionen gemeint ist:
> z.B.: [mm]\pmat{ 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 }[/mm] = (1 4) [mm]\circ[/mm]
> (2 3)
>  ...

Wenn der Kern möglichst klein werden soll, muß ja das Bild möglichst groß sein, d. h. der Homomorphismus sollte surjektiv sein. Der Kern ist dann eine U-Gruppe vom Index 2, so eine gibt es, und ich bitte dich, sie zu suchen und zu finden.

>  Vielleicht kann mir das jemand erklären???

Wenn es als Erklärung soweit reicht, würde es mich sehr freuen!

Gruß aus HH-Harburg
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]