matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische Funktionenstetig, differenzierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Trigonometrische Funktionen" - stetig, differenzierbar
stetig, differenzierbar < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetig, differenzierbar: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:44 Mi 08.03.2006
Autor: daylight

hallo,
ich habe grad probleme eine folgende aufgabe zu verstehen

f(x)=|sinx|

1. bei welchem x aus R ist die Funktion

a) stetig und differenzierbar
b) stetig, aber nicht differenzierbar


Wie kann man sowas ausrechnen? Wie verhaelt sich Betrag von sinX?
Stellt man zwei FAelle auf x<>0 oder x<> pi?

ich hoffe, ihr koennt mir weiterhelfen.
bin grad im ausland und muss das selber erarbeiten, habe aber probleme, es zu verstehen.

DANKE!!!

        
Bezug
stetig, differenzierbar: markante Stellen
Status: (Antwort) fertig Status 
Datum: 13:53 Mi 08.03.2006
Autor: Roadrunner

Hallo daylight,

[willkommenmr] !!


Von der "normalen" Sinus-Funktion $y \ = \ [mm] \sin(x)$ [/mm] sollte bekannt sein, dass sie überall stetig und differenzierbar ist.

Daher sind bei Deiner Funktion $f(x) \ = \ [mm] |\sin(x)|$ [/mm] lediglich die Stellen interessant, an welcher die Sinusfunktion das Vorzeichen wechselt:

[mm] f(x)=|\sin(x)|=\begin{cases} -\sin(x), & \mbox{für } \sin(x) \ < \ 0 \mbox{ } \\ +\sin(x), & \mbox{für } \sin(x) \ \ge \ 0 \mbox{} \end{cases} [/mm]


"Knackpunkte" sind also alle diejenigen Stellen, an denen gilt:

[mm] $\sin(x) [/mm] \ = \ 0$    [mm] $\gdw$ $x_k [/mm] \ = \ [mm] k*\pi$ [/mm] mit [mm] $k\in\IZ$ [/mm]


Ohne Beschränkung der Allgemeinheit kannst Du Dir also nun die Stelle [mm] $x_0 [/mm] \ = \ [mm] 0*\pi [/mm] \ = \ 0$ betrachten.


Weißt Du nun, wie Du die Stetigkeit und/oder die Differenzierbarkeit zeigen kannst?


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]