matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungquotientenregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - quotientenregel
quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quotientenregel: zusammenfassen
Status: (Frage) beantwortet Status 
Datum: 17:43 Fr 10.01.2014
Autor: b.reis

Aufgabe
bestimmen Sie f'(x) und vereinfachen Sie soweit möglich!

[mm] \bruch{3x}{(x-2)^2} [/mm]


Hallo,


ich hab hiermit so meine Probleme und zwar bin ich folgendermaßen vorgegangen:

Ich habe die Quotienten-Regel benutzt


[mm] f'(x)=\bruch{1*(x-2)^2-(3x(2(x-2))*1)}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{(x-2)^2-(3x(2x-4))}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{(x-2)^2-(6x^2-12x)}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{(x-2)^2-6x(x-2))}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{(x-2)(-6x+(x-2))}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{-5x-2}{(x-2)^3} [/mm]

Stimmt aber nicht das Ergebnis ist [mm] f'(x)=\bruch{3x+6}{(x-2)^3} [/mm]

Erkennt jemand den Fehler, ich bin im ausklammern und zusammenfassen nicht so gut

danke

benni




        
Bezug
quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Fr 10.01.2014
Autor: DieAcht

Hallo,


Die Ableitung von 3x ist 3.


DieAcht

Bezug
        
Bezug
quotientenregel: Zähler falsch abgeleitet
Status: (Antwort) fertig Status 
Datum: 17:58 Fr 10.01.2014
Autor: mister_xyz

ja, der Zähler ist falsch abgeleitet: 3x abgeleitet ist 3 und nicht 1

Bezug
        
Bezug
quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Fr 10.01.2014
Autor: Paper090

[mm] \bruch{u}{v}=\bruch{u'*v-u*v'}{v^{2}} [/mm]

u'= 3
v'= 2(x-2)

f'(x)= [mm] \bruch{3*(x-2)^{2}-3x*2(x-2)}{(x-2)^4} [/mm]

= [mm] \bruch{3}{(x-2)^{2}}-\bruch{6x}{(x-2)^{3}} [/mm]

Gruß

Bezug
                
Bezug
quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Sa 11.01.2014
Autor: b.reis

[mm] \bruch{3\cdot{}(x-2)^{2}-3x\cdot{}2(x-2)}{(x-2)^4} [/mm]

Bei diesem Minuszeichen in der Mitte handelt es sich um das vorzeichen der 3x oder ist es das vorzeichen der Klammer also - (v'*u)

denn so würde sich auch das Vorzeichen der x-2 ändern


M.f.G,


benni

Bezug
                        
Bezug
quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Sa 11.01.2014
Autor: Diophant

Hallo,

> [mm]\bruch{3\cdot{}(x-2)^{2}-3x\cdot{}2(x-2)}{(x-2)^4}[/mm]

>

> Bei diesem Minuszeichen in der Mitte handelt es sich um das
> vorzeichen der 3x oder ist es das vorzeichen der Klammer
> also - (v'*u)

>

Was für eine Frage??? Wenn in einer Formel an einer Stelle ein Minuszeichen steht, und in einer Anwendung dieser Formel genau an der gleichen Stelle ebenfalls ein Minuszeichen, wo kommt das dann wohl her???
  

> denn so würde sich auch das Vorzeichen der x-2 ändern

Den Sinn dieser Bemerkung kann man nicht verstehen, muss man wohl aber auch nicht.

Gruß, Diophant

Bezug
                
Bezug
quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Sa 11.01.2014
Autor: b.reis

Hallo,

also wenn ich das hier zusammenfasse [mm] \bruch{3\cdot{}(x-2)^{2}-3x\cdot{}2(x-2)}{(x-2)^4} [/mm]

[mm] =\bruch{(x-2)(3(x-2)-6x)}{(x-2)^4} [/mm]

Kürze

[mm] =\bruch{3(x-2)-6x}{(x-2)^3} [/mm]

ausmultipliziere

[mm] =\bruch{-3x-6}{(x-2)^3} [/mm]


Mein Ergebnis sollte aber  [mm] \bruch{3x+6}{(x-2)^3} [/mm] sein ?




M.f.G.


benni

Bezug
                        
Bezug
quotientenregel: Musterlösung falsch
Status: (Antwort) fertig Status 
Datum: 13:09 Sa 11.01.2014
Autor: Loddar

Hallo Benni!


> ausmultipliziere
>
> [mm]=\bruch{-3x-6}{(x-2)^3}[/mm]

[daumenhoch] Das ist richtig.


> Mein Ergebnis sollte aber [mm]\bruch{3x+6}{(x-2)^3}[/mm] sein ?

Das stimmt nicht, zumindest nicht als 1. Ableitung zu $f(x) \ = \ [mm] \bruch{3x}{(x-2)^2}$ [/mm] .


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]