matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpernormalteiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - normalteiler
normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalteiler: tipp
Status: (Frage) beantwortet Status 
Datum: 19:36 Mi 18.11.2009
Autor: grafzahl123

Aufgabe
sei G eine gruppe, N normalteiler von G und U [mm] \le [/mm] G sowie [mm] (U_i [/mm] : i [mm] \in [/mm] I) eine familie von Untergruppen von G. zeige:
N [mm] \cap [/mm] U ist ein Normalteiler von U

ich hab irgendwie garkeine idee wie man hier vorgehen soll. hat vielleicht irgenwer nen tipp wie man hier anfangen könnte.

N ist normalteiler, das heißt doch, dass es eine spezielle untergruppe ist mit gN=Ng und gNg^-1=N. wenn ich das jetzt mit U, also einer untergruppe, schneide erhalte ich doch eigentlich die triviale Untergruppe, die nur das neutrale element enthält!? und die wäre ja auf jeden fall normalteiler von G. ich hab einfach mal meine gedanken aufgeschrieben, vielleicht ist ja was sinnvolles dabei :-)

würde mich über hilfe freuen.

ich habe diese frage i n kienem anderen forum gestellt.

        
Bezug
normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 18.11.2009
Autor: felixf

Hallo!

> sei G eine gruppe, N normalteiler von G und U [mm]\le[/mm] G sowie
> [mm](U_i[/mm] : i [mm]\in[/mm] I) eine familie von Untergruppen von G.
> zeige:
>  N [mm]\cap[/mm] U ist ein Normalteiler von U
>
>  ich hab irgendwie garkeine idee wie man hier vorgehen
> soll. hat vielleicht irgenwer nen tipp wie man hier
> anfangen könnte.

Na: die Eigenschaften fuer Untergruppe und Normalteiler nachrechnen.

Die Untergruppeneigenschaften musst du selber rechnen.

Fuer die Normalteilereigenschaft nimm dir ein $g [mm] \in [/mm] U$. Du musst nun $g (N [mm] \cap [/mm] U) [mm] \subseteq [/mm] (N [mm] \cap [/mm] U) g$ und $(N [mm] \cap [/mm] U) g [mm] \subseteq [/mm] (N [mm] \cap [/mm] U) g$ zeigen.

Zu $g (N [mm] \cap [/mm] U) [mm] \subseteq [/mm] (N [mm] \cap [/mm] U) g$ nimmst du dir ein $n [mm] \in [/mm] N [mm] \cap [/mm] U$. Da $N$ ein Normalteiler ist, gilt $g n [mm] \in [/mm] N g$. Du musst also noch $g n [mm] \in [/mm] U g$ zeigen, dann folgt $g n [mm] \in [/mm] (N [mm] \cap [/mm] U) g$.

Dann leg mal los...

> N ist normalteiler, das heißt doch, dass es eine spezielle
> untergruppe ist mit gN=Ng und gNg^-1=N.

Das gilt fuer alle $g [mm] \in [/mm] G$, damit es Normalteiler in $G$ ist.

> wenn ich das jetzt
> mit U, also einer untergruppe, schneide erhalte ich doch
> eigentlich die triviale Untergruppe, die nur das neutrale
> element enthält!?

Warum solltest du? Ist etwa $N = U$ nicht die triviale Untergruppe, so ist $N [mm] \cap [/mm] U = N = U$ ebenfalls nicht die triviale Untergruppe.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]