matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationlog ableiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - log ableiten
log ableiten < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

log ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 So 28.05.2006
Autor: Sancho_Pancho

Aufgabe
3*log3x

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo ihr! da ich gerade am üben für die klausur bin, habe ich gleich noch eine frage:
und zwar ist mir nicht ganz klar, was mit der 3* passiert,
also mein lösungsweg wäre:

1/(3*x*ln3)

oder was passiert mit der 3*???  wie ist dann die gesamte lösung?

        
Bezug
log ableiten: 2 Wege
Status: (Antwort) fertig Status 
Datum: 17:36 So 28.05.2006
Autor: Loddar

Hallo Sancho_Pancho!


Welche von den beiden $3_$ meinst Du denn? Die erste $3_$ wird gemäß MBFaktorregel beibehalten.

Die $3_$ im Argument der [mm] $\ln$-Funktion [/mm] kann man nun auf zwei Wege ableiten:


1. MBKettenregel:

$f'(x) \ = \ [mm] 3*\bruch{1}{3x}*3 [/mm] \ = \ [mm] 3*\bruch{1}{x} [/mm] \ = \ [mm] \bruch{3}{x}$ [/mm]



2. zuvor MBLogarithmusgesetz:

$f(x) \ = \ [mm] 3*\ln(3*x) [/mm] \ = \ [mm] 3*\left[\ln(3)+\ln(x)\right] [/mm] \ = \ [mm] 3*\ln(3)+3*\ln(x)$ [/mm]

[mm] $\Rightarrow$ [/mm]   $f'(x) \ = \ [mm] 0+3*\bruch{1}{x} [/mm] \ = \ [mm] \bruch{3}{x}$ [/mm]


Gruß
Loddar


Bezug
        
Bezug
log ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 So 28.05.2006
Autor: Sancho_Pancho

verstehe deine lösungswege nicht, wäre es dir möglich sie mir ausführlich zu erklären?
meinte die erste 3.

komme immer wieder nur auf

0*log3x + 3*(1/x*ln3)= 3(1/x*ln3)

verstehs einfach nicht

Bezug
                
Bezug
log ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 So 28.05.2006
Autor: mathmetzsch

Hallo,

was Loddar meinte. Du willst [mm]f(x)=3*log(3*x)[/mm] ableiten. Bei der ersten Variante wird die Kettenregel verwendet. Die innere Ableitung, also 3x abgeleitet, wird mal die äußere, also log, genommen. Das heißt also

log(x) abgeleitet gibt [mm] \bruch{1}{x*ln(a)}, [/mm] wobei a die Basis des Logarithmus ist. Wäre log=ln, dann ist das gerade ln(e)=1.

3*x abgeleitet ist 3, also

[mm] f'(x)=3\bruch{3}{3*x*ln(a)}=\bruch{3}{x*ln(a)} [/mm]

Man kann auch vorher ein Logarithmengesetz verwenden:

3*log(3*x)=3*(log(3)+log(x))=3*log(3)+3log(x)

[mm] f'(x)=0+\bruch{3}{x*ln(a)}=\bruch{3}{x*ln(a)} [/mm]

Ist es jetzt klarer?

Viele Grüße
Daniel

Bezug
        
Bezug
log ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 So 28.05.2006
Autor: Sancho_Pancho

ja danke, an sich schon, nur die 3nach dem log ist nach unten gestellt, sorry...
also zur basis a=3??
wie hieße es dann

gruss

Bezug
                
Bezug
log ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 So 28.05.2006
Autor: mathmetzsch

Hallo,

ach so, also heißt die Funktion [mm] f(x)=3*log_{3}(x) [/mm] ? Dann ist die Ableitung eine andere. Dann braucht man eigentlich nur die eine Regel anzuwenden. Es folgt

[mm] f'(x)=\bruch{3}{x*ln(3)} [/mm]

Alles klar?

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]