matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenlimes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - limes
limes < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

limes: Bruchterm
Status: (Frage) beantwortet Status 
Datum: 20:16 Mi 11.04.2012
Autor: bandchef

Aufgabe
Geben sie diesen Grenzwert an:

[mm] $\lim_{n \to \infty} \left| \frac{2^n}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n} \right|$ [/mm]

Ich hab soweit mal vereinfacht:

[mm] $\lim_{n \to \infty} \left| \frac{2^n}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n} \right| [/mm] = ... = [mm] \frac{1}{\sqrt{2\pi}} \cdot \lim_{n \to \infty} \left| \frac{e^{n \cdot ln(2)+n}}{\sqrt{n}\cdot e^{n\cdot ln(n)}} \right|$ [/mm]

Weiter vereinfachen kann ich nicht mehr, bzw. ich sehe es nicht. Wenn ich in diesem Stadium die Grenzwertbetrachtung mache, dann kommt ja [mm] "$\frac{\infty}{\infty}$" [/mm] raus; das ist ja schwachsinn...

        
Bezug
limes: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Mi 11.04.2012
Autor: MathePower

Hallo bandchef,

> Geben sie diesen Grenzwert an:
>  
> [mm]\lim_{n \to \infty} \left| \frac{2^n}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n} \right|[/mm]
>  
> Ich hab soweit mal vereinfacht:
>  
> [mm]\lim_{n \to \infty} \left| \frac{2^n}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n} \right| = ... = \frac{1}{\sqrt{2\pi}} \cdot \lim_{n \to \infty} \left| \frac{e^{n \cdot ln(2)+n}}{\sqrt{n}\cdot e^{n\cdot ln(n)}} \right|[/mm]
>  
> Weiter vereinfachen kann ich nicht mehr, bzw. ich sehe es
> nicht. Wenn ich in diesem Stadium die Grenzwertbetrachtung


Eine Vereinfachung gibt es noch:

[mm]\wurzel{n}=e^{\bruch{1}{2}*\ln\left(n\right)}[/mm]


> mache, dann kommt ja "[mm]\frac{\infty}{\infty}[/mm]" raus; das ist
> ja schwachsinn...


Da Du jetzt einen unbestimmten Ausdruck der Form "[mm]\bruch{\infty}{\infty}[/mm]" hast,
kannst Du L'hospital anwenden.


Gruss
MathePower

Bezug
                
Bezug
limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Mi 11.04.2012
Autor: bandchef

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Oh, das hab ich ganz übersehen:

$ \lim_{n \to \infty} \left| \frac{2^n}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n} \right| = ... = \frac{1}{\sqrt{2\pi}} \cdot \lim_{n \to \infty} \left| \frac{e^{n \cdot ln(2)+n}}{e^{ln(n)\left(\frac{1}{2}+n\right)}}} \right| $


Wenn ich hier nun den Nenner bzw. den Zähler differenziere, werden die beiden Terme nur noch größer; sprich es fällt nirgends ein n weg... Ich denk schon fast, dass der l'Hospital hier nicht so passt...
Ich hab auch mal was gehört, dass man mit der Stirling-Formel abschätzen kann; aber ich weiß nicht wie das geht, noch dazu hier in diesem Fall wo doch in $\frac{2^n}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}$ diese Stirling-Formel (Nenner) eh schon drin steckt...

Bezug
                        
Bezug
limes: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Do 12.04.2012
Autor: Gonozal_IX

Hiho,

warum so kompliziert??

$ [mm] \lim_{n \to \infty} \left| \frac{2^n}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n} \right| [/mm] = [mm] \bruch{1}{\sqrt{2\pi}}\lim_{n \to \infty}\bruch{1}{\sqrt{n}}\left(\bruch{2e}{n}\right)^n$ [/mm]

Na und [mm] $\bruch{1}{\sqrt{n}} \to [/mm] 0$ als auch [mm] $\left(\bruch{2e}{n}\right)^n \to [/mm] 0$ ist offensichtlicht....

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]