matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiskonvexe funktion?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - konvexe funktion?
konvexe funktion? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexe funktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Mi 04.01.2006
Autor: tom.bg

Aufgabe
Sei f : [a, b] [mm] \to [/mm] R eine konvexe Funktion, und seien x1, . . . , xn  [mm] \in [/mm] [a, b]. Zeigen Sie:
Für alle [mm] \lambda_{1}, [/mm] . . . ,  [mm] \lambda_{n} [/mm] > 0 mit [mm] \summe_{i=1}^{n} \lambda_{i} [/mm] =1 gilt
[mm] f(\lambda_{1}*x_{1} +...+\lambda_{n}*x_{n}) \le \lambda_{1}*f(x_{1}) [/mm] +...+ [mm] \lambda_{n}*f(x_{n}) [/mm]

hallo
ich habe nicht das geringste ahnung was "konvexe Funktion" ist??
ich habe versuch mit ableitung aber ist nichts daraus gekommen - habe ich was falsch genacht oder muss man dass anders machen
ich bin dankbar für jede hilfe

        
Bezug
konvexe funktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Mi 04.01.2006
Autor: piet.t

Hallo,

ich weiss nicht, ob ihr eine andere Definition von "konvex" habt, aber im allgemeinen nennt man eine Funktion konvex auf einem Intervall I, wenn für alle x,y [mm] \in [/mm] I gilt:
[mm]f(tx+(1-t)y) <= t f(x) + (1-t) f(y) \quad \forall t\in ]0;1[ [/mm]

....und mit der Definition sollte Deine Aufgabe durch vollständige Induktion gut zu lösen sein.


Gruß

piet



Bezug
        
Bezug
konvexe funktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Do 05.01.2006
Autor: Timowob

Hallo Tom,

ich meine, konvexe Funktionen sind nach oben oben gekrümmte Funktionen. Z. B. e^(x) ist konvex.

Viele Grüße

Timo

Bezug
                
Bezug
konvexe funktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Di 10.01.2006
Autor: kuminitu

Hallo,

kann ir zufällig jemand zeigen wie ich sowas mit vollständiger induktion mache?
irgendwie finde ich für solche aufgaben manchmal einfach keine(n)
Lösung(sansatz).
MFG


Bezug
                        
Bezug
konvexe funktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Di 10.01.2006
Autor: mushroom

Hallo,

ich habe die Aufgabe wie folgt gelöst, kann aber nicht mit Sicherheit sagen, ob es so korrekt ist.

Induktionsanfang: [mm] f(\lambda_1x_1) \le \lambda_1f(x_1) [/mm]

Induktionsschritt:
Seien [mm] \lambda_{n+1} [/mm] = [mm] 1-\sum_{i=1}^n \lambda_i, \quad \lambda [/mm] := [mm] \lambda_1+\ldots+\lambda_n, \quad x:=\frac{\lambda_1}{\lambda}x_1 [/mm] + [mm] \ldots [/mm] + [mm] \frac{\lambda_n}{\lambda}x_n [/mm]

[mm] f(\sum_{i=1}^n \lambda_ix_i [/mm] + [mm] \lambda_{n+1}x_{n+1}) [/mm]
[mm] \quad [/mm] = [mm] f(\sum_{i=1}^n \lambda_ix_i [/mm] + [mm] (1-\sum_{i=1}^n \lambda_i)x_{n+1})\\ [/mm]
[mm] \quad [/mm] = [mm] f(\lambda [/mm] x + [mm] (1-\lambda)x_{n+1})\\ [/mm]
[mm] \quad \le \lambda [/mm] f(x) + [mm] (1-\lambda) f(x_{n+1})\\ [/mm]
[mm] \quad [/mm] = [mm] (\lambda_1 [/mm] f(x) + [mm] \ldots [/mm] + [mm] \lambda_n [/mm] f(x) + [mm] \lambda_{n+1}f(x_{n+1})\\ [/mm]
[mm] \quad [/mm] = [mm] \lambda_1 f(\frac{\lambda_1}{\lambda}x_1 [/mm] + [mm] \ldots [/mm] + [mm] \frac{\lambda_n}{\lambda}x_n) [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n f(\frac{\lambda_1}{\lambda}x_1 [/mm] + [mm] \ldots [/mm] + [mm] \frac{\lambda_n}{\lambda}x_n) [/mm] + [mm] \lambda_{n+1}f(x_{n+1})\\ [/mm]
[mm] \quad [/mm] = [mm] \lambda_1 f(x_1) [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n f(x_n) [/mm] + [mm] \lambda_{n+1} f(x_{n+1}) [/mm]

Bei der ersten Ungleichung habe ich die Definition der konvexen Funktion angewendet.
Bin mir beim letzten Schritt (habe Induktionsvoraussetzung angewendet) nicht sicher, ob das so klappt.

Gruß Markus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]