matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe Zahlenkomplexe mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "komplexe Zahlen" - komplexe mengen
komplexe mengen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe mengen: korrektur
Status: (Frage) beantwortet Status 
Datum: 17:55 So 15.11.2009
Autor: sepp-sepp

Aufgabe
Schreiben Sie folg. Mengen in Mengenschreibweise:( man befinde sich in der komplexen Zahlenebene)
a)der senkrechte Streifen, dessen Schnitt mit der reellen Achse das Intervall (-3;1] ist.
b)die obere Hälfte der Kreislinie um 0 mit Radius 1 einschließlich ihrer Endpunkte
c) Vereinigung der beiden Geraden durch 0 mit Steigung + bzw.-1
d) das rechteck mit den ecken 3+i, 3-i, -3+i, -3-i inklusive rand

also bei der a)hätte ich: M={z [mm] \in \IC [/mm] : [mm] -3 b) M= {z [mm] \in \IC [/mm] : |x+|y|i|-1=0 }
c) M= {z [mm] \in \IC [/mm] : Re z+ Im z=0 } [mm] \cup [/mm] {z [mm] \in \IC [/mm] : Re z- Im z=0 }
d) M= {z [mm] \in \IC [/mm] : [mm] -3\le Rez\le3 \wedge [/mm] -i [mm] \le [/mm] Imz [mm] \le [/mm] i }

stimmt das so?

        
Bezug
komplexe mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 So 15.11.2009
Autor: steppenhahn

Hallo!

> Schreiben Sie folg. Mengen in Mengenschreibweise:( man
> befinde sich in der komplexen Zahlenebene)
>  a)der senkrechte Streifen, dessen Schnitt mit der reellen
> Achse das Intervall (-3;1] ist.
>  b)die obere Hälfte der Kreislinie um 0 mit Radius 1
> einschließlich ihrer Endpunkte
>  c) Vereinigung der beiden Geraden durch 0 mit Steigung +
> bzw.-1
>  d) das rechteck mit den ecken 3+i, 3-i, -3+i, -3-i
> inklusive rand

Ich nehme an, ihr dürft für die Lösung der Aufgaben die Schreibweisen Im(z) und Re(z) benutzen, weil du es machst.

>  also bei der a)hätte ich: [mm] M={z\in \IC : -3

[ok]

>  b) M= {z [mm] \in \IC [/mm] : |x+|y|i|-1=0 }

Hier ist etwas unklar, was du meinst, ich denke aber du meinst

$M= [mm] \{z \in \IC : |x+y*i|-1=0 \} [/mm] = [mm] \{z \in \IC : |z|=1 \}$. [/mm]

Das ist noch nicht ganz richtig, denn jede komplexe Zahl auf dem Kreis um 0 mit Radius 0 ist im Moment in deiner Menge M. Du musst noch schreiben, dass $Im(z) [mm] \ge [/mm] 0$ ist, damit wirklich nur die "obere Hälfte einschließlich der Endpunkte" herauskommt, also:

$M= [mm] \{z \in \IC : |z|=1\mbox{ und } Im(z)\ge 0\}$ [/mm]

>  c) M= {z [mm] \in \IC [/mm] : Re z+ Im z=0 } [mm] \cup [/mm] {z [mm] \in \IC [/mm] : Re z- Im z=0 }

[ok]

>  d) M= {z [mm] \in \IC: -3\le Rez\le3 \wedge [/mm] -i [mm] \le [/mm] Imz [mm] \le [/mm] i  }

Das stimmt fast. Bedenke jedoch, dass [mm] $Im(z)\in\IR$ [/mm] ist, also schreibe nicht:

$-i [mm] \le [/mm] Im(z) [mm] \le [/mm] i$,

sondern

$-1 [mm] \le [/mm] Im(z) [mm] \le [/mm] 1$.

Grüße,
Stefan

Bezug
                
Bezug
komplexe mengen: kurz noch zur b)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 So 15.11.2009
Autor: sepp-sepp

danke dir! noch kurz zur b): Die Einschränkung auf die obere Hälfte wollte ich mit |y| ausdrücken. Weiß nur nicht ob das zulässig ist.

Bezug
                        
Bezug
komplexe mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 So 15.11.2009
Autor: steppenhahn

Hallo!

> danke dir! noch kurz zur b): Die Einschränkung auf die
> obere Hälfte wollte ich mit |y| ausdrücken. Weiß nur
> nicht ob das zulässig ist.

Nein, das ist falsch, weil wie du leicht nachprüfen kannst auch die negativen y's dann deine Gleichung erfüllen würden.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]