matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperirreduzible Faktoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - irreduzible Faktoren
irreduzible Faktoren < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Faktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Sa 24.01.2009
Autor: johnny11

Aufgabe
Zerlegen Sie folgendes Polynom in irreduzible Faktoren:
[mm] x^4 [/mm] + 1 in [mm] \IC[x], \IR[x], \IQ[x], \IZ[x]. [/mm]

In [mm] \IC[x] [/mm] und [mm] \IR[x] [/mm] konnte ich das Polyonom problemlos zerlegen.
Nämlich:

[mm] (x+e^{i\bruch{\pi}{4}})(x-e^{i\bruch{\pi}{4}})(x+e^{i\bruch{3\pi}{4}})(x-e^{i\bruch{3\pi}{4}}) [/mm] in [mm] \IC[x] [/mm]

und

[mm] (x^2+\wurzel{2}x [/mm] + [mm] 1)(x^2-\wurzel{2}x [/mm] + 1) in [mm] \IR. [/mm]


Doch in [mm] \IZ[x] [/mm] und [mm] \IQ[x] [/mm] ist [mm] x^4+1 [/mm] irreduzibel. Doch wie kann ich dies zeigen?

        
Bezug
irreduzible Faktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Sa 24.01.2009
Autor: schachuzipus

Hallo johnny11,

Kennst du das []Eisensteinkriterium ?

Damit geht es blitzschnell, wenn du $x:=y+1$ substituierst und dir das Polynom [mm] $(y+1)^4+1$ [/mm] anschaust.


LG

schachuzipus

Bezug
                
Bezug
irreduzible Faktoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:57 So 25.01.2009
Autor: johnny11

Hallo,

Ja das Eisensteinkriterium kenne ich.

Mit der Substitution und nach Ausmultiplizieren erhalte ich:

[mm] y^4 [/mm] + [mm] 4y^3 [/mm] + [mm] 6y^2 [/mm] + 4y + 2.

Dann wähle ich für p = 2 . Somit wäre also das Polynom irreduzibel über [mm] \IQ[x]. [/mm]

Aber zwei Fragen stehen nun noch offen:

Wesalb darf ich x:= y + 1 eifach so subtituieren?
Und was ist mit der Irrezuzibilität über [mm] \IZ[x]? [/mm]
Das Eisensteinkriterium gilt doch nur über einem Quotientenkörper...?

Bezug
                        
Bezug
irreduzible Faktoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 Di 27.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]