matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikgleichheit von mengen prim.rek
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Logik" - gleichheit von mengen prim.rek
gleichheit von mengen prim.rek < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichheit von mengen prim.rek: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:57 So 12.11.2006
Autor: AriR

Aufgabe
Es sei F eine Menge zahlentheoretischer Funktionen. Wir definieren die
Menge PRFT(F) von primitiv rekursiven Funktionstermen in F wie folgt:
 Alle Grundfunktionszeichen sind in PRFT(F).
 Für jedes [mm] f\inF [/mm] ist ein Name [mm] [u]f[\u] [/mm] in PRFT(F); die Stellenzahl von [mm] [u]f[\u] [/mm] ist die von f.
 PRFT(F) ist abgeschlossen unter Sub und Rec.
Weiter sei PRF(F) der primitiv rekursive Abschluß von F, d. h. die Menge der von
Termen aus PRFT(F) dargestellten Funktionen, wobei [mm] [u]f[\u] [/mm] für [mm] f\inF [/mm] natürlich f darstellt.
Zeigen Sie, dass für [mm] F\subseteq [/mm] PRF bereits
PRF(F) = PRF
gilt.  

hat da jemand eine idee wie man das machen kann?

bestimmt muss man zeigen: 1. [mm] PRF(F)\subseteq [/mm] PRF
                          2. [mm] PRF\subseteq [/mm] PRF(F)

nur wie genau machen ich das?
zu1.)
ich denke mal nimmt sich ein [mm] f\in [/mm] PRF(F) für dieses gelten dann ja die 3 oben aufgeführten punkte, dann folt doch schon direkt, dass f eine prim.rek funktion ist oder nicht?

zu2.)

das wäre doch analog oder?

irgendwie kommt mir das etwas zu einfach vor, also ist da sicher was falsch +g+

kann mir BITTE jemand weiterhelfen?

gruß ari

        
Bezug
gleichheit von mengen prim.rek: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 15.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]