matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisf konjugiert komplex reell
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - f konjugiert komplex reell
f konjugiert komplex reell < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f konjugiert komplex reell: differenzierbar
Status: (Frage) überfällig Status 
Datum: 20:33 Mo 10.10.2011
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Man zeige:

a) $\overline{f}$ komplex differenzierbar in c $\gdw$ f reell differenzierbar in c und $f_{z}(c)=0$

b) $\overline{f}$ komplex differenzierbar in $c \Rightarrow \overline{f}'(c) = \overline{f_{\overline{z}}(c))}$

Hallo,

a) $\overline{f}$ komplex differenzierbar in c, damit ist $\overline{f}$ in c auch reell differenzierbar.

Behauptung: eine Funktion f ist genau dann reell differenzierbar, wenn u und v reell differenzierbar sind . (also ist die reelle differenzierbarkeit unabhängig von i)  

Beweis: sei $\overline{f} =: g$ , also ist g reell differenzierbar. Für g=(u+iv) folgt nun, dass auch $u= \frac{1}{2}(g+\overline{g}$ und $v = \frac{1}{2i}(g-\overline{g})$ reell differenzierbar sein müssen, also auch die Summen von $g$ und $\overline{g}$ und damit $\overline{g}$ selber. Damit ist auch $\overline{g}=f$ in c reell differenzierbar.


Die CauRie Bedingungen werden erfüllt für $\overline{f}$. Es gilt : $\overline{f} = \overline{u+iv} = u-iv$ also gilt für die CauRie Bedingungen:  $u_{x} = -v_{y}$ , $u_{y}=v_{x}$
Also folgt: $f_{z} = \frac{1}{2}(u_{x}+iv_{x})-\frac{i}{2}(u_{y}+iv_{y}) = \frac{1}{2}(u_{x}+iu_{y})-\frac{i}{2}(u_{y}-iu_{x}) = 0$


b) mit $f_{\overline{z}}=\frac{1}{2}f_{x} + \frac{i}{2}f_{y}$  und den CauRie Bedingungen: $u_{x}=-v_{y}; u_{y}=v_{x}$
folgt sofort: ${\overline{f}' = u_{x}-iv_{x} = \frac{1}{2}(u_{x}-iu_{y})-\frac{i}{2}(u_{y}+iu_{x})=\frac{1}{2}(u_{x}-iv_{x})-\frac{i}{2}(u_{y}-iv_{y})=\overline{\frac{1}{2}(u_{x}+iv_{x})+\frac{i}{2}(u_{y}+iv_{y})} = \overline{f_{\overline{z}} $



Reicht und stimmt das so?



Bin für jegliche Hilfe sehr dankbar!



Gruss
kushkush

        
Bezug
f konjugiert komplex reell: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 12.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]