matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Finanzmathematikerw. Johnson-Algorithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Finanzmathematik" - erw. Johnson-Algorithmus
erw. Johnson-Algorithmus < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erw. Johnson-Algorithmus: Hilfe bei 3 Maschinen
Status: (Frage) überfällig Status 
Datum: 15:34 Fr 12.03.2010
Autor: Druss

Aufgabe
Haben eine Firme welche Autos wäscht folgende Tabelle gibt Auskunft über die einzelnen Arbeitsgänge und Bearbeitungszeiten

[mm] \begin{array}{c|c|c|c} Boot & Abtragen (ZE) & Wachsen (ZE) & Lackieren (ZE)\\ \hline 1 & 10 & 5 & 15\\ 2 & 13 & 4 & 8\\ 3 & 11 & 7 & 13\\ 4 & 5 & 2 & 17\\ 5 & 14 & 0 & 9\\ 6 & 7 & 4 & 14\\ \end{array}$\\ [/mm]

- Begründen Sie, warum der erweiterte Algorithmus von Johnson in dieser Situation angewandt werden kann.

- Ermitteln Sie den optimalen Ablaufplan des modifizierten Problems mit Hilfe des erweiterten Johnson-Algorithmus. Bestimmen Sie die Zykluszeit des neuen optimalen Ablaufplans.


Ich weiß, dass wir mit dem Algorithmus eine Auftragsfolge für beliebig viele Auftäge auf zwei Maschinen finden welche die Zykluszeit minimiert.

Schritt 1:
- Wähle den Auftrag mit der geringsten Bearbeitungszeit.
- Wird die Bearbeitungszeit auf Maschine 1  benötigt, bearbeite den Auftrag so früh wie möglich.
- Wird die Bearbeitungszeit auf Maschine 2 benötigt, bearbeite den Auftrag so spät wie möglich.
- Gibt es mehrere Aufträge mit identischer Bearbeitungszeit, wird ein beliebiger Auftrag aus dieser Menge gemäß der genannten Regeln eingeplant.

Schritt 2:
- Wähle den nächsten Auftrag und wiederhole die Vorgehensweise solange, bis für den gesamten Auftragsbestand die Bearbeitungsreihenfolge feststeht.

Mein Problem:
Der oben genannte Algorithmus optimiert die Reihenfolge der Aufträge für zwei Maschinen jedoch haben wir im genannten Fall drei Maschinen.

Ich weiß, dass ich bei mehr als zwei Maschinen nach Campell-Dudek-Smith die erste n und die letzen n-k Maschinen aufaddieren kann (führe auf den original Johnson Algorithmus zurück) und komme so ebenfalls auf akzeptable Ergebnisse.

Ich weiß jedoch nicht genau welche Maschinen genau ich aufaddieren kann und warum es in diesem Fall möglich ist. Habe ebenfalls ein Beispiel wo der erweiterte Johnson nicht angewendet werden kann.

Dort gesagt, dass ein Ausweg ist den oben genannten Algorithmus trotzdem anwenden zu können die Bearbeitungszeiten zu verändern jedoch weiß ich nicht genau wie im Falle, dass wir nicht gleich den Johnson anwenden können.

Vielen lieben Dank

mfg



        
Bezug
erw. Johnson-Algorithmus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 20.03.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]