matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisdehnungsbeschränkte Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - dehnungsbeschränkte Funktionen
dehnungsbeschränkte Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dehnungsbeschränkte Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Do 15.12.2005
Autor: roxy

Aufgabe
Zeigen Sie mit Hilfe von Intervallschachtelungen den Zwischenwertsatz
für dehnungsbeschränkte Funktionen:
Sei f : [a, b] → [mm] \IR [/mm] dehnungsbeschränkt, d.h. es gibt L > 0, so dass gilt:
[mm] |f(x_{0}) [/mm] − [mm] f(x_{1})| [/mm] ≤ [mm] L|x_{0} [/mm] − [mm] x_{1}| [/mm] für alle [mm] x_{0}, x_{1} [/mm] ∈ [a, b] .
Dann gibt es zu jedem y zwischen f(a) und f(b) ein x ∈ [a, b] mit f(x) = y.

Hallo zusammen!
kann mir jemand weiterhelfen?
Danke!
roxy

        
Bezug
dehnungsbeschränkte Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Do 15.12.2005
Autor: mathiash

Hallo roxy,

versuchen wir es mal:  Betrachten wir den Fall f(a)< f(b), der andere Fall geht analog.
Die Bedingung sagt dann doch

[mm] f(a+\delta) \in [f(a)-L\cdot \delta,f(a)+L\cdot\delta] [/mm]  (für [mm] \delta\in [/mm] [0,b-a])  und

[mm] f(b-\delta)\in [f(b)-L\cdot \delta, f(b)\cdot +\delta] [/mm]   (für [mm] \delta\in [/mm] [0,b-a])

Wir suchen ja ein x mit f(x)=y. Die obigen Bedingungen (man kann sie sich auch gut
graphisch veranschaulichen) geben dann doch Schranken für ein solches x:

die erste liefert   [mm] x\geq a+\bruch{y-f(a)}{L}=: a_2 [/mm]  und die zweite liefert
[mm] x\leq b-\bruch{f(b)-y}{L}=: b_2. [/mm] Es ist [mm] a_2\leq b_2 [/mm] und [mm] b_2-a_2= b-a-\bruch{f(b)-f(a)}{L}. [/mm]

Wg. [mm] f(a_2)\leq y\leq f(b_2) [/mm] kann ich dann dies so iterieren, d.h. ich nehme [mm] a_2,b_2 [/mm]
als neue Werte für a,b, und die Intervallaenge konvergiert bei Iterieren geg. 0, wobei
y immer im Interval [mm] [f(a_i),f(b_i)] [/mm] ist.

Ich hoffe, das hilft Dir genügend weiter.

Viele Gruesse,

Mathias

Bezug
        
Bezug
dehnungsbeschränkte Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Fr 16.12.2005
Autor: Julius

Hallo!

Eine weitere Lösung kann man []hier nachlesen...

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]