matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriede Moivre-Laplace, Umformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - de Moivre-Laplace, Umformung
de Moivre-Laplace, Umformung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

de Moivre-Laplace, Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:03 Fr 19.04.2013
Autor: sissile

Aufgabe
Ich bin gerade beim Beweis vom Satz von de Moivre - Laplace
und brauche die Gleichheit wie sie im Hinweis steht:

[mm] \frac{\sqrt{2 \pi n } n^n}{\sqrt{(2\pi)^2 k (n-k)} k^k (n-k)^{n-k}} p^k q^{n-k} [/mm]
=
[mm] \frac{1}{\sqrt{2 \pi n \frac{k}{n} (1-\frac{k}{n})}} [/mm] exp(n [mm] g_p (\frac{k}{n}) [/mm]

wobei [mm] g_p [/mm] (x) = x log (p/x) + (1-x) log((1-p)/(1-x))
q=1-p

Hallo

Kam auch mit Logarithmus und exponentialregeln fast bis ans Ziel:
[mm] \frac{1}{\sqrt{2 \pi n \frac{k}{n} (1-\frac{k}{n})}} [/mm] exp(n [mm] g_p (\frac{k}{n}) [/mm]
=.....= [mm] \frac{1}{\sqrt{2 \pi n \frac{k}{n} (1-\frac{k}{n})}} \frac{n^n}{k^k (n-k)^{n-k}} p^k q^{n-k} [/mm]
Aber an den letzten Umformungen scheitert es nun, Ich dachte mir meine Umformungen stimmen da der gesamte rechte Term ja stimmt..
Wenn ihr gar nicht damit übereinstimmt, poste ich meinen Rechenweg ist aber nicht kompliziert nur kompliziert aufzuschreiben.

        
Bezug
de Moivre-Laplace, Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Fr 19.04.2013
Autor: wieschoo

moin,

erweitere doch einmal deinen Bruch im letztem Schritt mit [mm] $\sqrt{2\pi n}$. [/mm]

gruß
wieschoo

Bezug
                
Bezug
de Moivre-Laplace, Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:42 Sa 20.04.2013
Autor: sissile

jap,danke--;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]