matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - ableitung
ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Mi 13.06.2007
Autor: engel

hallo!

habe noch eine allerletzte frage.

http://www.directupload.net/file/d/1092/wtS2P8bU_jpg.htm

zu b)

da rechne ich so:

lim
x->1+

2-2
x-2

2(x-1) / (x-1)

also bekomme ich was anderes raus, als dort angegeben ist.

was mache ich falsch?

bei der d)

habe ich für lim
x->1+

2 raus

für lim
x->1-

habe ich

(x-1) * (x+1) / x-1

und also auch 2.

scheint aber falsch zu sein, oder?

        
Bezug
ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Mi 13.06.2007
Autor: engel

Hallo!

Warum kann keiner helfen?

Habe ich mal wider eine falsche angabe gemacht oder so?

DANKE!

Bezug
        
Bezug
ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Mi 13.06.2007
Autor: dormant

Hi!

Es steht Differenzenquotient da, und nicht Differentialquotient. Du musst x nicht gegen 1 laufen lassen, sonder einfach [mm] x^2 [/mm] für f(x) einsetzen und den Differenzenquotienten für x<1 ausrechnen; und 2x für f(x) für x>1 ausrechnen, mehr nicht. Und f(1) ist ja einfach 1. Mehr nicht. Du hast ja in a) gesagt, dass f bei 1 nicht diffbar ist - dann existiert ja dieser Grenzwert, den du auszurechnen versuchst, gar nicht :)


> bei der d)
>  
> habe ich für lim
>  x->1+
>  
> 2 raus
>  
> für lim
>  x->1-
>  
> habe ich
>  
> (x-1) * (x+1) / x-1
>  
> und also auch 2.
>  
> scheint aber falsch zu sein, oder?

Also ist g bei 1 diffbar. Passt schon.

Gruß,
dormant

Bezug
                
Bezug
ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mi 13.06.2007
Autor: engel

Hallo!

hänge bei der b

bei x>1 bilde ich ja den differenzenquotient

f(x)-f(1) / x-1

f(x) = 2x

und f(1) ist dann doch 2*1 = 2

scheinbar nicht. wo liegt mein denkfehler?

Danke euch füt eure Bemühungen"

Bezug
                        
Bezug
ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mi 13.06.2007
Autor: dormant

Hi!

Schau dir Definition von f genau an. f(1) ist definiert als [mm] 1^{2} [/mm] und nicht als 2*1. [mm] f(x)=x^{2} [/mm] für x kleiner oder GLEICH eins. Also [mm] f(1)=1^{2}=1. [/mm] f(x)=2x nur für x>1, also wirklich GRÖßER eins.

Gruß,
dormant

Bezug
                                
Bezug
ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Mi 13.06.2007
Autor: engel

sgn'(x) = 0

warum das?

kann man das irgendwie nachweisen?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]