matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperZ-Moduln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Z-Moduln
Z-Moduln < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Z-Moduln: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:16 Di 27.05.2014
Autor: derriemann

Aufgabe
Sei M eine abelsche Gruppe. Zeigen Sie, dass M vermöge der skalaren Multiplikation

[mm] rx=\begin{cases} \summe_{i=1}^{r}x, & \mbox{ falls r>0} \\ 0, & \mbox{falls r=0} \\ \summe_{i=1}^{-r}-x, & \mbox{falls r<0} \end{cases} [/mm]

für alle r [mm] \in \IZ [/mm] und x [mm] \in [/mm] M ein [mm] \IZ-Modul [/mm] ist. Zeigen Sie ausserdem, dass dies die einzige [mm] \IZ-Modulstruktur [/mm] auf M ist und dass jeder Homomorphismus von abelschen Gruppen auch ein Homomorphismus von [mm] \IZ-Moduln [/mm] ist.

Hi,

der erste Teil, dass ein [mm] \IZ-Modul [/mm] vorliegt, geht ja recht problemlos. Nur bei dem nächsten Teil hänge ich ein wenig. Wie soll man denn jetzt zeigen, dass dies die einzige ist? Man könnte sich noch höchstens andere Strukturen ausdenken und diese dann ausschließen, aber für alle allgemein?

Und der letzte Teil sieht ja wieder recht einfach aus, denn jede abelsche Gruppe M kann mit der obigen skalaren Verknüpfung in eindeutiger Weise als ein [mm] \IZ-Modul [/mm] aufgefasst werden und somit ist jeder Homomorphismus von abelschen Gruppen auch ein Homomorphismus von [mm] \IZ-Moduln [/mm]

Hat jemand Ideen? :-)


        
Bezug
Z-Moduln: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Di 27.05.2014
Autor: UniversellesObjekt


> Sei M eine abelsche Gruppe. Zeigen Sie, dass M vermöge der
> skalaren Multiplikation
>  
> [mm]rx=\begin{cases} \summe_{i=1}^{r}x, & \mbox{ falls r>0} \\ 0, & \mbox{falls r=0} \\ \summe_{i=1}^{-r}-x, & \mbox{falls r<0} \end{cases}[/mm]
>  
> für alle r [mm]\in \IZ[/mm] und x [mm]\in[/mm] M ein [mm]\IZ-Modul[/mm] ist. Zeigen
> Sie ausserdem, dass dies die einzige [mm]\IZ-Modulstruktur[/mm] auf
> M ist und dass jeder Homomorphismus von abelschen Gruppen
> auch ein Homomorphismus von [mm]\IZ-Moduln[/mm] ist.
>  Hi,
>  
> der erste Teil, dass ein [mm]\IZ-Modul[/mm] vorliegt, geht ja recht
> problemlos. Nur bei dem nächsten Teil hänge ich ein
> wenig. Wie soll man denn jetzt zeigen, dass dies die
> einzige ist? Man könnte sich noch höchstens andere
> Strukturen ausdenken und diese dann ausschließen, aber
> für alle allgemein?

Sei [mm] $m\in [/mm] M$. Aus den Axiomen für Moduln folgt schon, wie $1m$ aussehen muss. Um $nm$ auszurechnen für [mm] $n\in\IZ$, [/mm] verwende, dass [mm] $\IZ$ [/mm] durch $1$ erzeugt wird und das Axiom der Distributivität verrät, dass auch $nm$ eindeutig festgelegt ist.

> Und der letzte Teil sieht ja wieder recht einfach aus, denn
> jede abelsche Gruppe M kann mit der obigen skalaren
> Verknüpfung in eindeutiger Weise als ein [mm]\IZ-Modul[/mm]
> aufgefasst werden und somit ist jeder Homomorphismus von
> abelschen Gruppen auch ein Homomorphismus von [mm]\IZ-Moduln[/mm]

Bist du dir sicher, dass eure Axiome für "Homomorphismus abelscher Gruppen" und "Homomorphismus für [mm] $\IZ$-Moduln" [/mm] übereinstimmen, oder fehlt bei abelschen Gruppen nicht etwas, das du noch zeigen musst?

Liebe Grüße,
UniversellesObjekt


Bezug
                
Bezug
Z-Moduln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Mi 28.05.2014
Autor: derriemann

Super, also kann Mann schreiben:

Sei m [mm] \in [/mm] M. Für n [mm] \in \IZ [/mm] folgt [mm] nm=(1+1+....+1)m=1m+1m+...+1m=m+m+...+m=\summe_{i=1}^{n}m [/mm]

Somit [mm] \IZ-Modulstruktur [/mm] eindeutig

Jede abelsche Gruppe kann mit dieser skalaren Operation mit Skalaren aus [mm] \IZ [/mm] in eindeutiger Weise zu einem [mm] \IZ-Modul [/mm] ueberfuehrt werden.

Für einen Gruppenomomorphismus f von M nach N (N,M [mm] \IZ-Moduln) [/mm] gilt:
f(x+y)=f(x)+f(y), [mm] \forall [/mm] x,y [mm] \in [/mm] M
Sei a [mm] \in \IZ, f(ax)=f(\summe_{i=1}^{a}x)=\summe_{i=1}^{a}f(x)=a*f(x), [/mm]
also ein [mm] \IZ-Modul-Homomorphismus [/mm]


Wäre das so ok? :-)

Bezug
                        
Bezug
Z-Moduln: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Mi 28.05.2014
Autor: UniversellesObjekt

[ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]