matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeitssätze 3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeitssätze 3
Wahrscheinlichkeitssätze 3 < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitssätze 3: Satz von Bayes / totalen Wahr.
Status: (Frage) beantwortet Status 
Datum: 09:41 Di 23.10.2007
Autor: Amarradi

Aufgabe
Zwei Schützen schießen unabhängig von einander auf eine Zielscheibe. Die Wahrscheinlichkeit, dass der 1. Schütze (2. Schütze) eine 10 schießt beträgt 0,9 (0,8)
Wie groß ist die Wahrscheinlichkeit dafür, dass
1) genau eine 10 Geschossen wird
2) wenigstens eine 10 Geschossen wird
3) zwei 10nen geschossen werden
4) keine 10 Geschossen wird?

Hallo zusammen,

Ich komme bei der Aufgabe auf keinen Vernünftigen Gedanken, zwar bin ich mir einiger Antworten bewußt, aber verstehe doch einige Sachen nicht.
1) Hier ist doch gefragt, das wenn der 1. eine 10 schießt, dann schießt der 2. keine 10 und umgekehrt. Liege ich damit erstmal richtig?
A = 1. Schütze trifft die 10
B = 2. Schütze trifft die 10

P(A)=0,9
P(B)=0,8
Sind folgende Gedanken bei 1) richtig?
-A trifft unter der Bedingung das B nicht trifft
--A trifft nicht unter der Bedingung das B trifft
-B trifft unter der Bedingung das A nicht trifft
--B trifft nicht unter der Bedingung das A trifft
Jetzt meine Frage: Wie bringe ich dass, wenn es richtig ist nun in eine Formel, und warum?

2) Wenigstens eine 10 heßt doch A und B treffen, oder A trifft und B nicht oder B trifft und A nicht
[mm] P(A)*P(B)+P(A)*P(\overline{B})+P(B)*P(\overline{A}) [/mm]
0,9*0,8+0,9*0,2+0,8*0,1 = 0,98
Stimmt das und auch die Gedanken?

3) Zwei 10nen bedeutet doch, dass A und B genau treffen und jeder 1 mal
P(A)*P(B)
0,9*0,8=0,72
Stimmt das und auch die Gedanken?

4) Keine 10 heißt doch das A und B nicht zusammen treffen, und auch A nicht trifft und B auch nicht unabhängig -> logisch
[mm] 1-[P(A)*P(B)+P(A)*P(\overline{B})+P(B)*P(\overline{A})] [/mm] => 1 -[0,9*0,8+0,9*0,2+0,8*0,1] =0,02
Stimmen auch hier meine Gedanken, oder ist das Falsch, dann bitte schreibt es mal rein, besonders bei 1) bin ich gespannt.

Viele Grüße und Danke schonmal

Marcus Radisch

        
Bezug
Wahrscheinlichkeitssätze 3: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 Di 23.10.2007
Autor: luis52

Moin Marcus,

bei derartigen Fragestellungen rate ich stets dazu, eine Wahrscheinlichkeitstabelle zu erstellen mit den Wahrscheinlichkeiten [mm] $P(A\cap [/mm] B)$,  [mm] $P(\overline{A}\cap [/mm] B)$, [mm] $P(A\cap \overline{B})$, $P(\overline{A}\cap \overline{B})$ [/mm] . Die sieht im vorliegenden Fall so aus:


[mm] \begin{tabular} {@{}cccc@{}} \hline & A & \overline{A} & \sum\\\hline B&0.72 & 0.08 & 0.8\\ \overline{B} &0.18 & 0.02 & 0.2 \\\hline \sum &0.9 & 0.1& 1.0\\ \hline \end{tabular} [/mm]

Aus ihr kann man alles spielend ablesen:

1) [mm] $P(\overline{A}\cap B)+P(A\cap \overline{B})=0.08+0.18=0.26$ [/mm]
2) [mm] $P(A\cap B)+P(\overline{A}\cap B)+P(A\cap \overline{B})+P(A\cap B)=0.72+0.08+0.18=0.98=1-0.02=1-P(\overline{A}\cap \overline{B})$. [/mm]
3) [mm] $P(A\cap [/mm] B)=0.72$.
4) [mm] $P(\overline{A}\cap \overline{B})=0.02$ [/mm]

lg Luis


Bezug
                
Bezug
Wahrscheinlichkeitssätze 3: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Di 23.10.2007
Autor: Amarradi

Hey Luis,

meine Antwort kommt zwar spät, aber sie kommt, bin jetzt erst aus der FH zurück.
Das mit der Tabelle ist top, werde das auf jedenfall beibehalten. Geht richtig gut.
Danke

Viele Grüße

Marcus Radisch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]