matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesVolumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Volumen
Volumen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Do 24.01.2013
Autor: Ice-Man

Hallo,

ich habe da mal bitte noch eine Frage zur Volumenberechnung einer Dreieckspyramide.
Es sind alle 3 Eckpunkte sowie der Punkt der "Spitze D" gegeben.

Als Lösung ist [mm] \bruch{1}{6}|(\overrightarrow{AB}x\overrightarrow{AC})|\overrightarrow{AD} [/mm] vorgegeben.

Nur das erscheint mir nicht ganz korrekt.
Einerseits verstehe ich nicht genau wie ich [mm] \bruch{1}{6} [/mm] erhalte, bzw. ob man einfach Kreuzprodukt mit dem "Vektor der Spitze" multiplizieren kann.

Oder muss ich eine Ebenengleichung aufstellen und mir den Abstand der Höhe D zur Ebene errechnen?
Und dann ganz einfach
[mm] V=\bruch{1}{2}g*h [/mm] bestimmen?

Könnte mir da evtl. bitte nochmal jemand weiterhelfen?

Danke

        
Bezug
Volumen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Do 24.01.2013
Autor: fred97


> Hallo,
>  
> ich habe da mal bitte noch eine Frage zur Volumenberechnung
> einer Dreieckspyramide.
>  Es sind alle 3 Eckpunkte sowie der Punkt der "Spitze D"
> gegeben.
>  
> Als Lösung ist
> [mm]\bruch{1}{6}|(\overrightarrow{AB}x\overrightarrow{AC})|\overrightarrow{AD}[/mm]
> vorgegeben.
>  
> Nur das erscheint mir nicht ganz korrekt.
>  Einerseits verstehe ich nicht genau wie ich [mm]\bruch{1}{6}[/mm]
> erhalte, bzw. ob man einfach Kreuzprodukt mit dem "Vektor
> der Spitze" multiplizieren kann.
>  
> Oder muss ich eine Ebenengleichung aufstellen und mir den
> Abstand der Höhe D zur Ebene errechnen?
>  Und dann ganz einfach
> [mm]V=\bruch{1}{2}g*h[/mm] bestimmen?
>  
> Könnte mir da evtl. bitte nochmal jemand weiterhelfen?
>  
> Danke  


Schau Da mal rein:

http://mathekurs.ch/files/analytische_geometrie/spatprod.pdf

FRED

Bezug
                
Bezug
Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Do 24.01.2013
Autor: Ice-Man

Ok,

ich danke dir.
Und ich kann das ja auch so berechnen, denn es ist ja nicht in der Aufgabe exakt beschrieben das die Höhe senkrecht auf der Ebene steht.

Bezug
                        
Bezug
Volumen: Definitionssache
Status: (Antwort) fertig Status 
Datum: 15:27 Do 24.01.2013
Autor: Roadrunner

Hallo!


Es liegt in der Sache der Definition, dass eine Höhe immer senkrecht auf ihre Grundfläche steht.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]