matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Aufgabe 76
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:52 Mi 12.09.2007
Autor: Imperator_Serhat

Aufgabe
Beweisen Sie die Gültigkeit der Produktformel

[mm] \produkt_{k=2}^{n} \bruch{k^3-1}{k^3+1}=\bruch{2}{3} \cdot\ \left( 1+ \bruch{1}{n \cdot\ (n+1)} \right) [/mm]

für alle n [mm] \in \IN [/mm] mit n [mm] \ge [/mm] 2 mittels vollständiger Induktion

Hallo Leute,

wir lernen gerade für unsere Analysisklausur und brauchen Unterstützung. Wir rechnen diese Aufgaben parallel, haben aber keine Muster Lösungen. Daher tappen wir mit unseren Ergebnissen ein wenig im Dunkeln.
Es wäre Super, einige Ansätze oder Lösungsvorschläge zu haben, um einfach kontrollieren zu können, ob wir auf dem richtigen Dampfer sind.

Vielen Dank für eure Mühe im Voraus

Serhat & Flo

        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:54 Mi 12.09.2007
Autor: holwo

hallo,

wie sieht dein ansatz aus?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]