matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesVerstaendnisfrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Verstaendnisfrage
Verstaendnisfrage < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verstaendnisfrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:00 Di 28.02.2012
Autor: Denny22

Hallo,

irgendwie habe ich ein Verstaendnisproblem: Sei [mm] $u:\IR^d\rightarrow\IR^m$, $\tau\in\IR^d$ [/mm] und [mm] $R\in\IR^{d,d}$ [/mm] eine Rotationsmatrix. Nun definiere ich
eine Abbildung $a$ durch

    [mm] $[a(\tau,R)u](x):=u(R^{-1}(x-\tau))$ [/mm]
    d.h. [mm] $a(\tau,R): u(x)\longmapsto u(R^{-1}(x-\tau))$ [/mm]

Was versteht ihr nun unter [mm] $[a(\tau,R)u](R_2 x-\tau_2)$? [/mm] Entweder ersetzt man in der obigen Definition $x$ durch [mm] $R_2 x-\tau_2$ [/mm] und erhaelt

    [mm] $[a(\tau,R)u](R_2 x-\tau_2)=u(R^{-1}((R_2 x-\tau_2)-\tau))$ [/mm]

oder wird die definition nur auf das $x$ angewendet, d.h.

    [mm] $[a(\tau,R)u](R_2 x-\tau_2)=u(R_2(R^{-1}(x-\tau))-\tau_2)$? [/mm]

Danke fuer Eure Hilfe.

        
Bezug
Verstaendnisfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Di 28.02.2012
Autor: fred97


> Hallo,
>  
> irgendwie habe ich ein Verstaendnisproblem: Sei
> [mm]u:\IR^d\rightarrow\IR^m[/mm], [mm]\tau\in\IR^d[/mm] und [mm]R\in\IR^{d,d}[/mm]
> eine Rotationsmatrix. Nun definiere ich
> eine Abbildung [mm]a[/mm] durch
>  
> [mm][a(\tau,R)u](x):=u(R^{-1}(x-\tau))[/mm]
>      d.h. [mm]a(\tau,R): u(x)\longmapsto u(R^{-1}(x-\tau))[/mm]
>  
> Was versteht ihr nun unter [mm][a(\tau,R)u](R_2 x-\tau_2)[/mm]?
> Entweder ersetzt man in der obigen Definition [mm]x[/mm] durch [mm]R_2 x-\tau_2[/mm]
> und erhaelt
>  
> [mm][a(\tau,R)u](R_2 x-\tau_2)=u(R^{-1}((R_2 x-\tau_2)-\tau))[/mm]

Ja, so verstehe ich das.


>  
> oder wird die definition nur auf das [mm]x[/mm] angewendet, d.h.
>  
> [mm][a(\tau,R)u](R_2 x-\tau_2)=u(R_2(R^{-1}(x-\tau))-\tau_2)[/mm]?

Eher nicht

FRED

>  
> Danke fuer Eure Hilfe.


Bezug
                
Bezug
Verstaendnisfrage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:21 Di 28.02.2012
Autor: Denny22

Vielen Dank, dann verstehen wir das beide gleich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]