matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungVektorprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Vektorprodukt
Vektorprodukt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Mi 14.06.2006
Autor: annaL

Hallo!

Ich habe hier mal wieder eine Aufgabe aus dem Lambacher Schweizer Analytische Geometrie mit linearer Algebra, wo ich nicht wirklich weiter komme.

Und zwar soll bewiesen werden:

(a,b,c) = 0  [mm] \gdw [/mm] a,b,c sind linear abhängig. ( Das Vektorprodukt a,b,c, soll null sein! )

Linear abhängig bedeutet ja dass sich ein Vektor, z.b a als  Linearkombination der anderen darstellen lässt, z.B. a = b*c

Und (a,b,c) ist definiert als= (a*b) ( hier meine ich a kreuz b, also das Vektorprodukt ) * ( normale Multiplikation ) c

Aber ich habe keine Ahnung wie ich den Beweis führen könnte?

Danke!




        
Bezug
Vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Mi 14.06.2006
Autor: AT-Colt

Hallo annaL,

ich werde Vektoren durch einen Unterstrich kennzeichnen, dann ist "x" immer das Kreuzprodukt.

1.) Das Kreuzprodukt von zwei Vektoren steht senkrecht auf diesen Vektoren.

2.) Das Skalarprodukt zweier Vektoren ist genau dann 0, wenn beide Vektoren senkrecht aufeinander stehen.

Fangen wir mit der einfachen Richtung an:

"<=":
Seien [mm] $\underline{a}$, $\underline{b}$ [/mm] und [mm] $\underline{c}$ [/mm] linear abhängig, d.h. [mm] $\underline{c}$ [/mm] lässt sich darstellen als [mm] $\underline{c} [/mm] = [mm] \alpha\underline{a} [/mm] + [mm] \beta\underline{b}$. [/mm]

Setzen wir das einfach ein:

[mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = [mm] (\underline{a}x\underline{b})\cdot(\alpha\underline{a}+\beta\underline{b}) [/mm] = [mm] \alpha(\underline{a}x\underline{b})\cdot\underline{a} [/mm] + [mm] \beta(\underline{a}x\underline{b})\cdot\underline{b}$ [/mm]

Nach 1.) steht [mm] $\underline{a}x\underline{b}$ [/mm] sowohl auf [mm] $\underline{a}$ [/mm] als auch auf [mm] $\underline{b}$ [/mm] senkrecht. Nach 2.) sind dann beide Produkte 0, also
[mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = 0+0 = 0$


"=>"

Es gelte [mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = 0$.
Angenommen, [mm] $\underline{a}$, $\underline{b}$ [/mm] und [mm] $\underline{c}$ [/mm] seien nicht abhängig.

Dann lässt sich [mm] $\underline{c}$ [/mm] nicht darstellen als [mm] $\alpha\underline{a}+\beta\underline{b}$, [/mm] sondern als (da wir im [mm] $\IR^3$ [/mm] sind: [mm] $\alpha\underline{a}+\beta\underline{b}+\gamma(\underline{a}x\underline{b})$ [/mm]
[mm] ($\gamma \not= [/mm] 0$)

Nun ist aber gerade
[mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = [mm] (\underline{a}x\underline{b})\cdot\underline{c} [/mm] = [mm] \alpha(\underline{a}x\underline{b})\cdot\underline{a}+\beta(\underline{a}x\underline{b})\cdot\underline{b}+\gamma(\underline{a}x\underline{b})\cdot(\underline{a}x\underline{b}) [/mm] = 0 + 0 + [mm] \gamma(\underline{a}x\underline{b})\cdot(\underline{a}x\underline{b}) \not= [/mm] 0$

Was ein Widerspruch zur Voraussetzung [mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = 0$ ist.

greetz

AT-Colt

Bezug
                
Bezug
Vektorprodukt: Vektor
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Mi 14.06.2006
Autor: Herby

Hallo AT-Colt,


warum nimmst du [mm] \text{\\underline}\{ a\} [/mm] und nicht [mm] \text{\\vec}\{a\} [/mm]

in der Darstellung [mm] \underline{a} [/mm] vs. [mm] \vec{a} [/mm]


Liebe Grüße
Herby

Bezug
                        
Bezug
Vektorprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Mi 14.06.2006
Autor: AT-Colt

Schlechte Angewohnheit aus der theoretischen Physik, nicht steinigen bitte ^^;

Zugegebenermaßen wäre vec aber kürzer :P

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]