matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektoren und Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Vektoren und Geraden
Vektoren und Geraden < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren und Geraden: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:09 Mi 30.08.2006
Autor: Rmz

Aufgabe
Hallo Leute ich habe ein Problem ich muss die vektorielle Parametergleichung und die Zweipunktegleichung anhand einer Skizze erklären.

Kann mir Jemand dabei helfen ?

Danke im voraus...

Hallo Leute ich habe ein Problem ich muss die vektorielle Parametergleichung und die Zweipunktegleichung anhand einer Skizze erklären.

Kann mir Jemand dabei helfen ?

Danke im voraus...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vektoren und Geraden: Lösungsideen?
Status: (Antwort) fertig Status 
Datum: 18:19 Mi 30.08.2006
Autor: informix

Hallo Rmz,
> Hallo Leute ich habe ein Problem ich muss die vektorielle
> Parametergleichung und die Zweipunktegleichung anhand einer
> Skizze erklären.
>  
> Kann mir Jemand dabei helfen ?
>  

Du gibst uns nicht viel Informationen.
Gibst du uns erst eine konkrete Parametergleichung, an der du versuchst, die Bedeutung der einzelnen Teile zu erklären.
Dann werden wir dir sicherlich weiterhelfen können, wenn noch was unklar ist. Aber zunächst musst du uns ein bisschen mehr über dein Vorwissen zeigen...

Gruß informix

Bezug
                
Bezug
Vektoren und Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mi 30.08.2006
Autor: Rmz

Die vektorielle parametergleichung einer Geraden

Eine Gerade mit dem Stützvektor  [mm] \vec [/mm] a  und dem Richtungsvektor  [mm] \vec [/mm] m [mm] \ne \vec [/mm] o hat die Gleichung

g: [mm] \vec [/mm] x = [mm] \vec [/mm] a + r* [mm] \vec [/mm] m

r heißt Geradenparameter.

Bezug
                        
Bezug
Vektoren und Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 So 03.09.2006
Autor: informix

Hallo Rmz,
> Die vektorielle parametergleichung einer Geraden
>  
> Eine Gerade mit dem Stützvektor  [mm]\vec[/mm] a  und dem
> Richtungsvektor  [mm]\vec{ m }\ne \vec{o} [/mm]hat die Gleichung
>  
> g: [mm]\vec{ x} = \vec{a} + r*\vec {m} [/mm]
>
> r heißt Geradenparameter.

Der Stützvektor beschreibt den Aufpunkt (Aufhängepunkt) der Geraden.
Den Richtungsvektor kann man auch durch den Verbindungsvektor von zwei gegebenen Punkten ersetzen. (Zwei-Punkte-Form)

Was willst du noch dazu sagen?

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]