matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichung von Normen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Ungleichung von Normen
Ungleichung von Normen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung von Normen: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:53 Di 19.11.2013
Autor: Simone_333

Aufgabe
Für die p-Norm [mm] ||.||_{p} [/mm] im [mm] \IR^{n} [/mm] mit p [mm] \in [1,\infty) [/mm] zeige man:

[mm] ||x||_{p} \le n^{\bruch{q-1}{qp}} ||x||_{pq} [/mm]      
[mm] \forall [/mm] x [mm] \in \IR^{n} [/mm]

Hallo,

Ich habe diese Aufgabe zu lösen und komme einfach auf keine passende Idee.

Ich würde jetzt einfach mal so starten:

[mm] ||x||_p \le n*||x||_p [/mm]

So und nun hab ich mal ausprobiert was passiert, wenn ich

[mm] (n*||x||)^{p} [/mm] oder [mm] (n*||x||)^{q} [/mm]

aber das bringt mir irgendwie nichts.


Es wäre wirklich sehr nett, wenn mir jemand einen Tipp geben könnte wie ich weiter machen soll.

Vielen lieben Dank

        
Bezug
Ungleichung von Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Di 19.11.2013
Autor: fred97


> Für die p-Norm [mm]||.||_{p}[/mm] im [mm]\IR^{n}[/mm] mit p [mm]\in [1,\infty)[/mm]
> zeige man:
>  
> [mm]||x||_{p} \le n^{\bruch{q-1}{qp}} ||x||_{pq}[/mm]    

  

> [mm]\forall[/mm] x [mm]\in \IR^{n}[/mm]

Klär mich auf: was ist q ? Steht rechts wirklich [mm] ||x||_{pq} [/mm] ?

FRED

>  Hallo,
>  
> Ich habe diese Aufgabe zu lösen und komme einfach auf
> keine passende Idee.
>
> Ich würde jetzt einfach mal so starten:
>  
> [mm]||x||_p \le n*||x||_p[/mm]
>  
> So und nun hab ich mal ausprobiert was passiert, wenn ich
>
> [mm](n*||x||)^{p}[/mm] oder [mm](n*||x||)^{q}[/mm]
>
> aber das bringt mir irgendwie nichts.
>
>
> Es wäre wirklich sehr nett, wenn mir jemand einen Tipp
> geben könnte wie ich weiter machen soll.
>
> Vielen lieben Dank


Bezug
                
Bezug
Ungleichung von Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Di 19.11.2013
Autor: Simone_333


> > Für die p-Norm [mm]||.||_{p}[/mm] im [mm]\IR^{n}[/mm] mit p [mm]\in [1,\infty)[/mm]
> > zeige man:
>  >  
> > [mm]||x||_{p} \le n^{\bruch{q-1}{qp}} ||x||_{pq}[/mm]    
>
> > [mm]\forall[/mm] x [mm]\in \IR^{n}[/mm]
>  
> Klär mich auf: was ist q ? Steht rechts wirklich
> [mm]||x||_{pq}[/mm] ?
>  
> FRED

Hallo FRED, da hab ich´s vergessen aufzuschreiben
Es soll noch heißen: [mm] \forall [/mm] q>1


Bezug
                        
Bezug
Ungleichung von Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Di 19.11.2013
Autor: Simone_333


> > > Für die p-Norm [mm]||.||_{p}[/mm] im [mm]\IR^{n}[/mm] mit p [mm]\in [1,\infty)[/mm]
> > > zeige man:
>  >  >  
> > > [mm]||x||_{p} \le n^{\bruch{q-1}{qp}} ||x||_{pq}[/mm]    
> >
> > > [mm]\forall[/mm] x [mm]\in \IR^{n}[/mm]
>  >  
> > Klär mich auf: was ist q ? Steht rechts wirklich
> > [mm]||x||_{pq}[/mm] ?
>  >  
> > FRED

Hallo FRED, da hab ich´s vergessen aufzuschreiben
Es soll noch heißen: [mm]\forall[/mm] q>1 und ja die rechte Seite stimmt so.


Bezug
                        
Bezug
Ungleichung von Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Di 19.11.2013
Autor: fred97

Schau mal hier

http://de.wikipedia.org/wiki/P-Norm

unter "Äquivalenz"

FRED



Bezug
                                
Bezug
Ungleichung von Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Di 19.11.2013
Autor: Simone_333

Danke das ist schon mal ein guter Tipp.

Da werd ich mich gleich mal ran setzten.

Vielen lieben Dank Fred :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]