matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesUmstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Umstellen
Umstellen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Mo 28.12.2009
Autor: Ice-Man

Das müsste doch funktionieren, wenn ich das nach g umstellen möchte, oder?


[mm] \bruch{g*B}{G}=\bruch{g*f}{g-f} [/mm]


        
Bezug
Umstellen: ja
Status: (Antwort) fertig Status 
Datum: 17:00 Mo 28.12.2009
Autor: Loddar

Hallo Ice-Man!


Es hat mich eben wirklich in den Fingern gejuckt, Deine Frage (völlig korrekt) mit "ja" (und sonst nichts) zu beantworten. Bitte stelle in Zukunft auch konkrete Fragen.


Du kannst diese Gleichung zunächst durch $g \ [mm] \not= [/mm] \ 0$ teilen und anschließend jeweils mit dem Hauptnenner der Brüche zu multiplizieren.


Gruß
Loddar


Bezug
                
Bezug
Umstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Mo 28.12.2009
Autor: Ice-Man

Loddar, ich bin gerade völlig fastziniert von mir, ich habe das das nachdem ich die Frage eben gepostet habe, schon hinbekommen, und mein Ergebnis stimmt auch.
Hätt ich nicht von mir gedacht.

Aber ich habe irgendwie keinen Hauptnenner gebildet. (Vorher hat sich einmal g herausgekürzt, da ich ein Produkt hatte bei, [mm] \bruch{g(g-f)}{g*f}=\bruch{G*f}{B}) [/mm]

Meine Lösung,

[mm] g=\bruch{G*f}{B}+f [/mm]


Bezug
                        
Bezug
Umstellen: okay
Status: (Antwort) fertig Status 
Datum: 17:09 Mo 28.12.2009
Autor: Loddar

Hallo Ice-Man!


> Meine Lösung: [mm]g=\bruch{G*f}{B}+f[/mm]

[ok]


Gruß
Loddar


Bezug
        
Bezug
Umstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Mo 28.12.2009
Autor: Ice-Man

Wie komme ich hier auf f?

[mm] \bruch{f}{f-g}=\bruch{B}{G} [/mm]

Kann ich den Bruch, auf der "linken Seite" irgendwie "aufspalten"?





Bezug
                
Bezug
Umstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mo 28.12.2009
Autor: Simurgh5

Erst mal das Reziproke bilden:
$ [mm] \bruch{f-g}{f} [/mm] = $ [mm] \bruch{G}{B} [/mm]

Dann kannst du zerlegen:
$ [mm] \bruch{f-g}{f} [/mm] = $ [mm] \bruch{f}{f} [/mm] - $ [mm] \bruch{g}{f} [/mm] = 1 - $ [mm] \bruch{g}{f} [/mm]

Alles klar? :)

Bezug
                        
Bezug
Umstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mo 28.12.2009
Autor: Ice-Man

Ja, jetzt ist soweit alles klar.
Nur bei der "1" bin ich mir jetzt nicht sicher, was ich damit machen soll.

[mm] \bruch{G}{B}=\bruch{g}{f}-1 [/mm]

[mm] \bruch{B*g}{G}=f-1 [/mm]

[mm] f=\bruch{B*g}{G}+1 [/mm]

so?

Bezug
                                
Bezug
Umstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mo 28.12.2009
Autor: Simurgh5

1 - $ [mm] \bruch{g}{f} [/mm] = $ [mm] \bruch{G}{B} [/mm]
$ [mm] \bruch{g}{f} [/mm] = 1  - $ [mm] \bruch{G}{B} [/mm]

Als Nächstes könnte man wieder erweitern:

[mm] \bruch{g}{f} [/mm] =  [mm] \bruch{B}{B} [/mm]  -  [mm] \bruch{G}{B} [/mm]
$ [mm] \bruch{g}{f} [/mm] = $ [mm] \bruch{B-G}{B} [/mm]
Dann bist du die 1 wieder los. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]