matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUmordnung von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Umordnung von Reihen
Umordnung von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umordnung von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Sa 31.03.2007
Autor: DerD85

Satz: Umordnung einer absolut konvergenten Reihe
Sei [mm]\summe_{n=0}^{\infty}z_n[/mm] absolut konvergent und es sei [mm]z=\summe_{n=0}^{\infty}z_n[/mm]. Dann konvergiert auch jede Umordnung von [mm]\summe_{n=0}^{\infty}z_n[/mm] gegen z.

Meine frage:
Warum muss ich absolute Konvergenz fordern? MIr wird das hier (auch nicht aus dem Beweis) deutlich :(.

Dankefür eure Hilfe,

Dennis

        
Bezug
Umordnung von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Sa 31.03.2007
Autor: schachuzipus

Hallo Dennis,

vielleicht kann ich das an einem Gegenbsp. verdeutlichen?

Nehmen wir [mm] \summe_n\frac{(-1)^n}{n+1} [/mm]

[mm] =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\pm... [/mm]

Jetzt ordnen wir mal auf 2 verschiedene Weisen um:

(1) [mm] 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\pm... [/mm]

[mm] =1+\frac{1}{2}-2\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-2\frac{1}{6}+\frac{1}{7}+\frac{1}{8}-2\frac{1}{8}\pm.... [/mm]

[mm] =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+\frac{1}{5}+\frac{1}{6}-\frac{1}{3}+\frac{1}{7}+\frac{1}{8}-\frac{1}{4}\pm.... [/mm]

[mm] \longrightarrow [/mm] 0

(2) [mm] 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}\pm... [/mm]

[mm] =\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+.... [/mm]

[mm] =\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+.....\ge\frac{1}{2} [/mm]

Damit wäre also [mm] 0=\limes_{k\rightarrow\infty}\summe_{n=0}^{k}\frac{(-1)^n}{n+1}\ge\frac{1}{2} [/mm]

Dh. verschiedene Umordungen können zu verschiedenen Reihenwerten führen.

Daher das Tamtam um den Begriff "unbedint konvergent" - also für jede Umordung konvergent ( gleichwertig zum Begriff "absolut kgt")

Gruß

schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]