matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationTrigon. Differentiation II
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Trigon. Differentiation II
Trigon. Differentiation II < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigon. Differentiation II: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:44 Fr 05.10.2012
Autor: Morph007

Aufgabe
Differenzieren Sie [mm] \bruch{x+cotx}{sin^2(x)} [/mm]




Wieder mit Quotientenregel: [mm] y'=\bruch{u'*v-u*v'}{v^2} [/mm]

mit
u = x+cotx
v = [mm] sin^2(x) [/mm]
u' = 1- [mm] \bruch{1}{sin^2(x)} [/mm]
v'= sin^(2x)

bin ich bei folgedendem Term

y' = [mm] \bruch{sin^2(x) -1 -2x sin(x) cos(x) + sin(2x)}{sin^4(x)} [/mm]


Lösung ist aber y'= [mm] \bruch{2x sin(2x) + 3 cos^2(x)}{sin^4(x)} [/mm]

Und nun mal wieder die Frage aller Fragen: Wo habe ich mich verhaspelt?

        
Bezug
Trigon. Differentiation II: Kettenregel
Status: (Antwort) fertig Status 
Datum: 09:48 Fr 05.10.2012
Autor: Roadrunner

Hallo Morph!

Du solltest Dir auf jeden Fall die Ableitung $v'_$ nochmals genau ansehen. Da musst Du z.B. auch die MBKettenregel anwenden.


Gruß vom
Roadrunner


Bezug
                
Bezug
Trigon. Differentiation II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:50 Fr 05.10.2012
Autor: Morph007

Habe ich schon bemerkt, dass v'=sin(2x) ist und korrigiert.

Aber wo soll ich denn die Kettenregel anweden?

Bezug
                        
Bezug
Trigon. Differentiation II: Antwort
Status: (Antwort) fertig Status 
Datum: 10:34 Fr 05.10.2012
Autor: franzzink

Hallo,


> Differenzieren Sie $ [mm] \bruch{x+cotx}{sin^2(x)} [/mm] $
> Wieder mit Quotientenregel: $ [mm] y'=\bruch{u'\cdot{}v-u\cdot{}v'}{v^2} [/mm] $
> mit
> u = x+cotx
> v = $ [mm] sin^2(x) [/mm] $
> u' = 1- $ [mm] \bruch{1}{sin^2(x)} [/mm] $
> v'= sin^(2x)


[ok] Das habe ich auch.


> bin ich bei folgedendem Term
>
> y' = $ [mm] \bruch{sin^2(x) -1 -2x sin(x) cos(x) + sin(2x)}{sin^4(x)} [/mm] $


Hier bekomme ich was anderes:

[mm] y' = \bruch{\sin^2(x)-1-(x+\cot(x))*\sin(2x)}{\sin^4(x)} = \bruch{\sin^2(x)-1-x*\sin(2x)-2*\cos^2(x)}{\sin^4(x)}= \bruch{-\cos^2(x)-x*\sin(2x)-2*\cos^2(x)}{\sin^4(x)} = \bruch{-x*\sin(2x)-3*\cos^2(x)}{\sin^4(x)}[/mm]


> Lösung ist aber y'= $ [mm] \bruch{2x sin(2x) + 3 cos^2(x)}{sin^4(x)} [/mm] $


Bist du sicher, dass diese Lösung stimmt?


Grüße
franzzink

Bezug
                                
Bezug
Trigon. Differentiation II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Fr 05.10.2012
Autor: Morph007

Vielen vielen Dank!

Hast Du evtl. eine Tabelle in der die Vereinfachungen der trig. Funktionen steht? Zum Beispiel, dass [mm] sin^2(x)-1 [/mm] = [mm] -cos^2(x) [/mm] ist.

Vorgegebene Lösung war tatsächlich falsch.

Bezug
                                        
Bezug
Trigon. Differentiation II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 Fr 05.10.2012
Autor: franzzink


> Vielen vielen Dank!
>  
> Hast Du evtl. eine Tabelle in der die Vereinfachungen der
> trig. Funktionen steht? Zum Beispiel, dass [mm]sin^2(x)-1[/mm] =
> [mm]-cos^2(x)[/mm] ist.

[mm]\sin^2(x)+\cos^2(x)=1[/mm]    Merken!!! :-)
[mm]\gdw \sin^2(x)-1=-\cos^2(x)[/mm]


Ansonsten finden sich viele nützliche Beziehungen zu den trigonometrischen Funktionen in jeder besseren Formelsammlung oder auch []hier. (Auf dieser Wikipedia-Seite sind für meinen Geschmack schon zu viele Beziehungen angegeben, wodurch es ein wenig unübersichtlich wird, wie ich finde...)
  

> Vorgegebene Lösung war tatsächlich falsch.


Bezug
                                                
Bezug
Trigon. Differentiation II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:03 Fr 05.10.2012
Autor: Morph007

Vielen Dank! Auf die Umformung hätte ich aber auch kommen können :D Aber manchmal steht man eben auf dem Schlauch und das kann ich ganz gut ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]