matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieTheorem von Bernoulli
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Theorem von Bernoulli
Theorem von Bernoulli < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Theorem von Bernoulli: Herleitung
Status: (Frage) beantwortet Status 
Datum: 08:18 Fr 07.02.2020
Autor: sancho1980

Hallo

in meinem Buch wird das Gesetz der großen Zahlen vorgestellt und hergeleitet:

[mm] \limes_{n\rightarrow\infty} P(|\overline{X} [/mm] - [mm] \mu| [/mm] < [mm] \epsilon) [/mm] = 1 (1)

(Der Vollständigkeit halber: [mm] \overline{X} [/mm] := [mm] \bruch{\summe_{i=1}^{n} X_i}{n}, [/mm] wobei [mm] X_1, [/mm] ..., [mm] X_n [/mm] unabhängige und identisch verteilte Zufallsvariablen, jeweils mit Erwartungswert [mm] \mu [/mm] und Varianz [mm] {\sigma}^2 [/mm] sind.)

Direkt im Anschluss wird das Theorem von Bernoulli vorgestellt:

[mm] \limes_{n\rightarrow\infty} P(|f_n [/mm] - p| [mm] \le \epsilon) [/mm] = 1, (2)

wobei [mm] f_n [/mm] die relative Häufigkeit des Eintritts von Ereignis A mit Eintrittswahrscheinlichkeit p bei n-facher Wiederholung des Zufallsexperimentes ist.

Leider wird dieses Theorem nicht formal hergeleitet, sondern es steht nur etwas lapidar da, dass es aus dem Gesetz der großen Zahlen "folgt". Ich kann das zwar gefühlt nachvollziehen, hätte mir aber eine formale Herleitung gewünscht.

Wenn ich (1) und (2) vergleiche, dann scheint es ja folgende Entsprechungen zu geben:

[mm] f_n \hat= \overline{X} [/mm]
p [mm] \hat= \mu [/mm]

Aber:

1) Welche Entsprechungen gibt es dann für [mm] X_1, [/mm] ..., [mm] X_n? [/mm]
2) Wieso heißt es im Gesetz der großen Zahlen "< [mm] \epsilon" [/mm] und im Theorem von Bernoulli [mm] "\le \epsilon"? [/mm]

Vielen Dank,

Martin

        
Bezug
Theorem von Bernoulli: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Fr 07.02.2020
Autor: Gonozal_IX

Hiho,

> in meinem Buch wird das Gesetz der großen Zahlen vorgestellt und hergeleitet:
>  
> [mm]\limes_{n\rightarrow\infty} P(|\overline{X}[/mm] - [mm]\mu|[/mm] <
> [mm]\epsilon)[/mm] = 1 (1)

Genauer: Das schwache Gesetz der großen Zahlen.
Und: Eine Frage kannst du dir faktisch selbst beantworten, wenn du das korrekt hinschreibst. Da fehlt nämlich noch ein [mm] $\forall\varepsilon [/mm] > 0$ davor.


> Leider wird dieses Theorem nicht formal hergeleitet,
> sondern es steht nur etwas lapidar da, dass es aus dem
> Gesetz der großen Zahlen "folgt". Ich kann das zwar
> gefühlt nachvollziehen, hätte mir aber eine formale
> Herleitung gewünscht.

Es "folgt" nicht daraus, sondern ist schlicht ein Spezialfall davon.

> 1) Welche Entsprechungen gibt es dann für [mm]X_1,[/mm] ..., [mm]X_n?[/mm]

Formal kann man das wie folgt modellieren:
Sei [mm] $X_i [/mm] = [mm] \begin{cases} 1 & \text{ Ereignis A tritt ein } \\ 0 & \text{ sonst} \end{cases}$ [/mm]

Dann ist [mm] $f_n [/mm]  = [mm] \overline{X}$ [/mm] und [mm] $\mu$ [/mm] rechnest du mal selbst aus.

>  2) Wieso heißt es im Gesetz der großen Zahlen "<
> [mm]\epsilon"[/mm] und im Theorem von Bernoulli [mm]"\le \epsilon"?[/mm]

Wie oben angemerkt: Vorne dran steht ja ein [mm] $\forall \varepsilon>0$ [/mm] , d.h. es ist schlichtweg egal, ob da ein < oder ein [mm] \le [/mm] steht.

Du kannst es ja gern mal formal beweisen, d.h. zeige:
[mm] $\forall\varepsilon>0 \limes_{n\rightarrow\infty} P(|\overline{X} [/mm] - [mm] \mu| [/mm] <  [mm] \epsilon) [/mm]  = 1 [mm] \quad\quad\gdw\quad\quad \forall\varepsilon>0 \limes_{n\rightarrow\infty} P(|\overline{X} [/mm] - [mm] \mu| \le \epsilon) [/mm]  = 1$

Beide Richtungen sind eigentlich relativ trivial.

Gruß,
Gono

Bezug
                
Bezug
Theorem von Bernoulli: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:32 Sa 08.02.2020
Autor: sancho1980


> Wie oben angemerkt: Vorne dran steht ja ein [mm]\forall \varepsilon>0[/mm]
> , d.h. es ist schlichtweg egal, ob da ein < oder ein [mm]\le[/mm]
> steht.

Stimmt, jetzt wo du das schreibst, ich nehme an, es dir geht darum, dass für stetige Zufallsvariablen gilt P(X > x) = P(X [mm] \ge [/mm] x) bzw.P(X < x) = P(X [mm] \le [/mm] x).
Irgendwie verwirrend, wenn dann trotzdem mal das eine und mal das andere Zeichen verwendet wird...

Bezug
                        
Bezug
Theorem von Bernoulli: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:36 Sa 08.02.2020
Autor: Gonozal_IX

Hiho,

> Stimmt, jetzt wo du das schreibst, ich nehme an, es dir
> geht darum, dass für stetige Zufallsvariablen gilt P(X >
> x) = P(X [mm]\ge[/mm] x) bzw.P(X < x) = P(X [mm]\le[/mm] x).

Nein, dein [mm] $\overline{X}$ [/mm] ist auch gar nicht stetig.
Das hängt damit zusammen, dass die Aussage für alle [mm] $\varepsilon>0$ [/mm] gilt.

Wie ich sagte: Zeige doch mal die von mir aufgeschriebene Äquivalenz formal exakt, d.h. das aus [mm] $P(\overline{X}_n \le \varepsilon) \to [/mm] 0$ für alle [mm] $\varepsilon [/mm] > 0$ folgt, dass auch [mm] $P(\overline{X}_n [/mm] < [mm] \varepsilon) \to [/mm] 0$ und umgekehrt!!

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]