matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikSummenformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Finanzmathematik" - Summenformel
Summenformel < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenformel: Frage
Status: (Frage) beantwortet Status 
Datum: 23:00 Mi 11.05.2005
Autor: drabbi

Hi,
kann mir eventuell wer tipps geben, wie ich  

[mm] \summe_{i=0}^{n-1}q^i=1-q^n/1-q [/mm]

beweisen kann.

vielen dank im voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Summenformel: Vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 23:13 Mi 11.05.2005
Autor: Loddar

Hallo drabbi!


Da Du ja bereits eine feste vorgegebene Formel hast, kannst Du diese ziemlich fix per vollständiger Induktion nachweisen.


Es gab aber hierfür auch eine richtige Herleitung, die mir leider gerade partout nicht einfallen will [peinlich].

Daher lasse ich Deine Frage auch mal auf den Status "teilweise beantwortet".


Gruß
Loddar


Bezug
        
Bezug
Summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Mi 11.05.2005
Autor: Professor

Hi,

diese Formel läßt sich wie bereits von Loddar erwähnt per vollständiger Induktion beweisen. Eine andere Möglichkeit ist die Multiplikation der linken Seite mit 1 - q und der dazu gehörigen Umformung.

[mm] (\summe_{i=0}^{n - 1} q^{i}) [/mm] * (1 - q) = [mm] \summe_{i=0}^{n - 1} q^{i} [/mm] - [mm] \summe_{i=0}^{n - 1} q^{i + 1} [/mm]

= 1 + q + [mm] q^{2} [/mm] + [mm] q^{3} [/mm] + [mm] q^{4} [/mm] ... + [mm] q^{n-1} [/mm]
       - q -   [mm] q^{2} [/mm] - [mm] q^{3} [/mm] -  [mm] q^{4} [/mm] ... -  [mm] q^{n-1} [/mm] - [mm] q^{n} [/mm] = 1 - [mm] q^{n} [/mm]

Ich hoffe ich konnte dir damit ein wenig weiter helfen.

Gruß

Prof.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]