matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraSumme von Räumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Summe von Räumen
Summe von Räumen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Räumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Mi 14.05.2008
Autor: Rutzel

Aufgabe
Sei [mm] \beta [/mm] eine symmetrische Bilinearform auf V (Vektorraum).
Für einen Unterraum W [mm] \subset [/mm] V ist [mm] W^\perp [/mm] := [mm] \{v \in V | \beta(v,w)=0 \forall w \in W\} [/mm]

Zeige:
[mm] (W_1+W_2)^\perp=W_1^\perp \cap W_2^\perp [/mm]

Hallo,
ich habe zunächst ein Problem, was ich mir unter der Summe zweier Räume vorstellen soll.
Zum Anderen: wie geht man an einen solchen Beweis ran? Nimmt man sich jeweils Vektoren aus den beiden Räumen und zeigt es anhand dieser Vektoren?

Sei v [mm] \in [/mm] V
Sei [mm] w_1 \in W_1 [/mm]
Sei [mm] w_2 \in W_2 [/mm]

[mm] (W_1+W_2)^\perp [/mm] = [mm] \{v \in V | \beta(v,w_1+w_2)=0 \forall (w_1+w_2)\in (W_1+W_2)\} [/mm]

Weiter komm ich nicht.

Gruß,
Rutzel


        
Bezug
Summe von Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Mi 14.05.2008
Autor: Merle23


> Sei [mm]\beta[/mm] eine symmetrische Bilinearform auf V
> (Vektorraum).
>  Für einen Unterraum W [mm]\subset[/mm] V ist [mm]W^\perp[/mm] := [mm]\{v \in V | \beta(v,w)=0 \forall w \in W\}[/mm]
>  
> Zeige:
>  [mm](W_1+W_2)^\perp=W_1^\perp \cap W_2^\perp[/mm]
>  Hallo,
>  ich habe zunächst ein Problem, was ich mir unter der Summe
> zweier Räume vorstellen soll.

Sind A,B zwei Vektorräume, so ist A+B der Vektorraum, in welchem du jedes Element [mm] c\in [/mm] A+B darstellen kannst als c=a+b mit [mm] a\in [/mm] A und [mm] b\in [/mm] B.
Eine geometrische Verdeutlichung: Wenn du im [mm] \IR^3 [/mm] zwei Geraden hast (die durch den Ursprung gehen) , dann sind das ja eindimensionale UVR. Wenn du von denen die Summe nimmst, dann hast du eine Fläche, nämlich die, die die beiden Geraden aufspannen - das wär dann ein zwei-dimensionaler UVR.

>  Zum Anderen: wie geht man an einen solchen Beweis ran?
> Nimmt man sich jeweils Vektoren aus den beiden Räumen und
> zeigt es anhand dieser Vektoren?
>  

Vektorräume sind Mengen. Also musst du zeigen [mm] (W_1+W_2)^\perp \subset W_1^\perp \cap W_2^\perp [/mm] und [mm] W_1^\perp \cap W_2^\perp \subset (W_1+W_2)^\perp. [/mm]

> Sei v [mm]\in[/mm] V
>  Sei [mm]w_1 \in W_1[/mm]
>  Sei [mm]w_2 \in W_2[/mm]
>  
> [mm](W_1+W_2)^\perp[/mm] = [mm]\{v \in V | \beta(v,w_1+w_2)=0 \forall (w_1+w_2)\in (W_1+W_2)\}[/mm]
>  
> Weiter komm ich nicht.
>  

Sei [mm] v\in (W_1+W_2)^\perp. [/mm] Dann ist [mm] \beta(v,w_1+w_2)=0 \forall w_1 \in W_1, w_2 \in W_2. [/mm] Jetzt die Linearität der Bilinearform ausnutzen. [mm] \beta(v,w_1+w_2)=\beta(v,w_1)+\beta(v,w_2)=0 \forall w_1 \in W_1, w_2 \in W_2. [/mm] Hieraus musst du jetzt folgern, dass
v [mm] \in W_1^\perp \cap W_2^\perp [/mm] ist.

Und dann noch die andere Richtung der Inklusion zeigen.

> Gruß,
>  Rutzel
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]