matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Stammfunktion bestimmen
Stammfunktion bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bestimmen: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:47 Fr 31.08.2007
Autor: DominicVandrey

Ich habe mal eine frage. Und zwar habe ich die Integration durch Substitution jetzt einigermaßen verstanden. Allerdings hapert es an Aufgaben wie z.B. [mm] \bruch{x^2}{\wurzel{1-x^6}} [/mm]
Mir ist klar, dass ich das substituieren muss, was unter dem Bruch in der Wurzel steht. Aber das Ergebnis welches ich bekomme ist total falsch.


        
Bezug
Stammfunktion bestimmen: etwas tricky
Status: (Antwort) fertig Status 
Datum: 11:56 Fr 31.08.2007
Autor: Roadrunner

Hallo Dominic!


Entweder gehst Du hier mit 2 Substitutionsschritten vor:

1.  $z \ := \ [mm] x^3$ [/mm]

2.  $z \ := \ [mm] \sin(u)$ [/mm]


Oder Du machst das gleich in einem Schwung mit [mm] $x^3 [/mm] \ := \ [mm] \sin(u)$ $\gdw$ [/mm]  $x \ := \ [mm] \wurzel[3]{\sin(u)}$ [/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]