matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesSphärendarstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Sphärendarstellung
Sphärendarstellung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sphärendarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mi 13.11.2013
Autor: Phil92

Guten Abend,

ich verstehe leider überhaupt nicht, wie man eine Sphäre im [mm] R^3 [/mm] darstellt bzw. was man damit alles berechnen kann.

Ich habe gegoogelt, dass die allgemeine Gleichung lautet:

[mm] r^{2} [/mm] = [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + [mm] z^{2} [/mm]

Wenn nun der Mitelpunkt der Sphäre nicht im Ursprung, sondern in (a,b,c) liegt, dann lautet die Gleichung:

[mm] r^{2} [/mm] = [mm] (x-a)^{2} [/mm] + [mm] (y-b)^{2} [/mm] + [mm] (z-c)^{2} [/mm]

Wenn ich nun einen Radius von 5 und einen Mittelpunkt von (1,-4,3) habe, würde die Gleichung lauten:

[mm] 5^{2} [/mm] = [mm] (x-1)^{2} [/mm] + [mm] (y+4)^{2} [/mm] + [mm] (z-3)^{2} [/mm]

Nun soll ich die Schnittstelle mit der XZ-Ebene finden. Wie finde ich die? Diese müsste ja ein Kreisfläche sein, oder?



        
Bezug
Sphärendarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Mi 13.11.2013
Autor: abakus


> Guten Abend,

>

> ich verstehe leider überhaupt nicht, wie man eine Sphäre
> im [mm]R^3[/mm] darstellt bzw. was man damit alles berechnen kann.

>

> Ich habe gegoogelt, dass die allgemeine Gleichung lautet:

>

> [mm]r^{2}[/mm] = [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + [mm]z^{2}[/mm]

>

> Wenn nun der Mitelpunkt der Sphäre nicht im Ursprung,
> sondern in (a,b,c) liegt, dann lautet die Gleichung:

>

> [mm]r^{2}[/mm] = [mm](x-a)^{2}[/mm] + [mm](y-b)^{2}[/mm] + [mm](z-c)^{2}[/mm]

>

> Wenn ich nun einen Radius von 5 und einen Mittelpunkt von
> (1,-4,3) habe, würde die Gleichung lauten:

>

> [mm]5^{2}[/mm] = [mm](x-1)^{2}[/mm] + [mm](y+4)^{2}[/mm] + [mm](z-3)^{2}[/mm]

>

> Nun soll ich die Schnittstelle mit der XZ-Ebene finden. Wie
> finde ich die? Diese müsste ja ein Kreisfläche sein,
> oder?

Ja.
Das wesentliche Merkmal aller Punkte der x-z-Ebene ist: ihre y-Koordinate ist Null.
Gruß Abakus
>
>

Bezug
                
Bezug
Sphärendarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Mi 13.11.2013
Autor: Phil92

Danke für deine Antwort. Demnach wäre also y=0 und somit:

[mm] 5^2 [/mm] = [mm] (x-1)^{2} [/mm] + [mm] (4)^{2} [/mm] + [mm] (z-3)^{2} [/mm]

25 = [mm] (x-1)^{2} [/mm] + 16 + [mm] (z-3)^{2} [/mm] |-16
9 = [mm] (x-1)^{2} [/mm] + [mm] (z-3)^{2} [/mm]

Also hätte ich nun eine Kreisformel, welche mir die Schnittstelle bzw. Schnittebene darstellt, korrekt?

Bezug
                        
Bezug
Sphärendarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mi 13.11.2013
Autor: MathePower

Hallo Phil92,

> Danke für deine Antwort. Demnach wäre also y=0 und
> somit:
>  
> [mm]5^2[/mm] = [mm](x-1)^{2}[/mm] + [mm](4)^{2}[/mm] + [mm](z-3)^{2}[/mm]
>  
> 25 = [mm](x-1)^{2}[/mm] + 16 + [mm](z-3)^{2}[/mm] |-16
>  9 = [mm](x-1)^{2}[/mm] + [mm](z-3)^{2}[/mm]
>  
> Also hätte ich nun eine Kreisformel, welche mir die
> Schnittstelle bzw. Schnittebene darstellt, korrekt?


Diese Kreisformel beschreibt die Menge aller Schnittstellen.


Gruss
MathePower

Bezug
                                
Bezug
Sphärendarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Mi 13.11.2013
Autor: Phil92

Alles klar. Vielen Dank für die hilfreichen Antworten :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]