matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisSobolevraum Abschätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Sobolevraum Abschätzung
Sobolevraum Abschätzung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sobolevraum Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 01.07.2015
Autor: Orchis

Aufgabe
Sei [mm] \Omaga [/mm] offene Punktmenge des [mm] \IR^n [/mm] und  f [mm] \in L^2(\Omega). [/mm] Zeige, dass [mm] \phi:H^{1,2} \to \IR [/mm] mit [mm] \phi(v) [/mm] = (v, [mm] f)_{H^{1,2}} [/mm] ein stetiges, lineares Funktional ist.

Hi zusammen,

das ist eine sehr kurze Sache, aber es fällt mir nichts zur Beschränktheit ein:

(1) Die Linearität ist klar, da das Skalarprod. bilinear ist.

(2) Stetigkeit zeige ich über Beschränktheit.
[mm] |\phi(v)| [/mm] = |(v, [mm] f)_{H^{1,2}}| [/mm]
[mm] \leq \|v\|_{H^{1,2}} \cdot \|f\|_{H^{1,2}} [/mm]  nach Cauchy-Schwarz
= [mm] (\|f\|_{L^2} [/mm] + [mm] \|\nabla f\|_{L^2}) \|v\|_{H^{1,2}} [/mm]
[mm] \leq [/mm] (C + [mm] \|\nabla f\|_{L^2}) \|v\|_{H^{1,2}}. [/mm]

Wie komme ich auf sowas wie [mm] |\phi(v)| \leq \tilde{C}\|v\|_{H^{1,2}}, [/mm] das [mm] \|\nabla f\|_{L^2}) [/mm] stört da noch...

Viele Dank schonmal fürs Helfen und viele Grüße!


        
Bezug
Sobolevraum Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Do 02.07.2015
Autor: fred97


> Sei [mm]\Omaga[/mm] offene Punktmenge des [mm]\IR^n[/mm] und  f [mm]\in L^2(\Omega).[/mm]
> Zeige, dass [mm]\phi:H^{1,2} \to \IR[/mm] mit [mm]\phi(v)[/mm] = (v,
> [mm]f)_{H^{1,2}}[/mm] ein stetiges, lineares Funktional ist.
>  Hi zusammen,
>  
> das ist eine sehr kurze Sache, aber es fällt mir nichts
> zur Beschränktheit ein:
>  
> (1) Die Linearität ist klar, da das Skalarprod. bilinear
> ist.
>  
> (2) Stetigkeit zeige ich über Beschränktheit.
>  [mm]|\phi(v)|[/mm] = |(v, [mm]f)_{H^{1,2}}|[/mm]
> [mm]\leq \|v\|_{H^{1,2}} \cdot \|f\|_{H^{1,2}}[/mm]  nach
> Cauchy-Schwarz
>  = [mm](\|f\|_{L^2}[/mm] + [mm]\|\nabla f\|_{L^2}) \|v\|_{H^{1,2}}[/mm]
>  [mm]\leq[/mm]
> (C + [mm]\|\nabla f\|_{L^2}) \|v\|_{H^{1,2}}.[/mm]
>  
> Wie komme ich auf sowas wie [mm]|\phi(v)| \leq \tilde{C}\|v\|_{H^{1,2}},[/mm]


Das hast Du doch !!!!


Oben hast Du geschrieben:

[mm] |\phi(v)| [/mm] = [mm] |(v,f)_{H^{1,2}}|\leq \|v\|_{H^{1,2}} \cdot \|f\|_{H^{1,2}} [/mm]



[mm] \tilde{C}:=\|f\|_{H^{1,2}} [/mm] leistet das Gewünschte !

FRED


> das [mm]\|\nabla f\|_{L^2})[/mm] stört da noch...
>  
> Viele Dank schonmal fürs Helfen und viele Grüße!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]