matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelSkalarprodukt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Längen, Abstände, Winkel" - Skalarprodukt
Skalarprodukt < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Sa 03.02.2007
Autor: Sonne1000

Hallo sitze gerade an folgender AUfgabe

Zeichne eine Figur für die gilt, dass das Skalarprodukt der Vektoren [mm] \overrightarrow{AB}und \overrightarrow{BC}gleich [/mm] null ist. Nun stehen ja hier nicht ide Vektorenenden oder Spitzen aufeinander, ist die Lösung trotzdem z.B ein rechtwinkliges dreieck? oder spielt es hierbei auch eine Rolle dass jedes mal endpunkt und endpunkt oder spitze und spitze  zusammentreffen

Ist wahrschienlich ne blöde Frage..freue mich aber auf eure Antworten...

        
Bezug
Skalarprodukt: rechter Winkel
Status: (Antwort) fertig Status 
Datum: 20:52 Sa 03.02.2007
Autor: Loddar

Hallo Sonne!


Nach meiner Auffassung hast Du Recht bzw. kannst Du hier jede geometrische Figur angeben, welche beim Punkt $B_$ einen rechten Winkel hat.


Gruß
Loddar


Bezug
                
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Sa 03.02.2007
Autor: Sonne1000

Hey!
Das nenn ich prompte Antwort! Dankeschöön!

Das Dreieck war auch nur ein Beispiel...
Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]