matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikSeman. Folgerungsbeziehung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Aussagenlogik" - Seman. Folgerungsbeziehung
Seman. Folgerungsbeziehung < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Seman. Folgerungsbeziehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Mo 17.09.2012
Autor: Avinu

Aufgabe
Zeigen oder widerlegen Sie, dass für alle [mm]\Phi, \Psi \in[/mm] AL, [mm]\phi, \psi \in[/mm] AL gilt:

Wenn [mm]\Phi \cup \left\{ \psi \right\}[/mm] |= [mm]\phi[/mm] und [mm]\Phi \cup \left\{ \neg \psi \right\}[/mm] |= [mm]\phi[/mm], dann gilt bereits [mm]\Phi[/mm] |= [mm]\phi[/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen,

ich lerne gerade für eine Klausur und habe diese Übungsaufgabe. Intuitiv würde ich sagen, dass die Aussage wahr ist, aber ich habe Probleme dies auch zu beweisen. Hat jemand einen Hinweis für mich?

Viele Grüße,
Avinu

        
Bezug
Seman. Folgerungsbeziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Mo 17.09.2012
Autor: hippias

Du musst zeigen, dass jede Interpretation, die [mm] $\Phi$ [/mm] erfuellt auch [mm] $\phi$ [/mm] erfuellt. Sei $I$ ein Modell von [mm] $\Phi$. [/mm] Wenn auch [mm] $I\models \psi$, [/mm] dann ist [mm] $I\models \Phi\cup \{\psi\}$, [/mm] sodass nach Voraussetzung [mm] $I\models \phi$ [/mm] folgt. Wenn [mm] $I\not\models \psi$ [/mm] .... jetzt versuche Du weiter.

Bezug
                
Bezug
Seman. Folgerungsbeziehung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 Di 18.09.2012
Autor: Avinu

Sei $ I $ ein Modell von $ [mm] \Phi [/mm] $. Wenn $ [mm] I\not\models \psi [/mm] $ dann gilt $ [mm] I\models \Phi\cup \{\neg \psi\} [/mm] $ und wegen $ [mm] \Phi \cup \{ \neg \psi \} \models \phi [/mm] $ gilt dann auch $I [mm] \models \phi$. [/mm]

Danke, das war ja viel einfacher als gedacht...manchmal ist es einfach der ansatz, der fehlt.

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]