matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteSchmidt - Orthonormalbasis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Skalarprodukte" - Schmidt - Orthonormalbasis
Schmidt - Orthonormalbasis < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schmidt - Orthonormalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 So 09.10.2011
Autor: perl

Aufgabe
Sei
U:= < [mm] \vektor{1 \\ 1 \\ 1 \\ 1}, \vektor{1 \\ -1 \\ 1 \\ 1}. [/mm]

Bestimmen sie eine Orthonormalbasis für [mm] U^{T} [/mm]

Hallo! Sagt mir bitte... was mach ich falsch??!?!?!:

1. zuerst vereinfache ich die vektoren mit gauß:
[mm] \pmat{ 1 & 1 & 1 & 1 \\ 0 & -2 & 0 & 0 } [/mm]

sei der erste Vektor := [mm] u_1 [/mm] der zweite durch [mm] u_2. [/mm]

2. Ich suche zu jedem der beiden Vektoren einen [mm] \perp [/mm] Vektor [mm] x_{1,2}: [/mm]

[mm] =0 [/mm]
--> [mm] x_1+x_2+x_3+x_4=0 [/mm]

Hier kann ich doch beliebig wählen solange [mm] =0 [/mm]  gilt oder??!?

--> [mm] x_1 [/mm] :=(0 0 1 -1)


[mm] =0 [/mm]
g.d.w. [mm] -2x_2=0 [/mm] ---> ich nehme mal [mm] x_2=(1 [/mm] 0 0 0)


Mein [mm] x_1, x_2 [/mm] bildet mit [mm] span(x_1,x_2) [/mm] eine Basis von [mm] U^{T}. [/mm]

3. Schmidtscher Verfahren

[mm] e_1:= \bruch{1}{|x_1|} x_1= \bruch{1}{\wurzel{2}}x_1 [/mm]

[mm] b_1= x_2 [/mm] - [mm] x_2 [/mm]

Hilfe... hier bekommen ich bei [mm] [/mm] immer 0 raus! was mach ich falsch????

        
Bezug
Schmidt - Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:34 Mo 10.10.2011
Autor: leduart

hallo
Dein x1 liegt doch schon nicht mehr in U? sowas sieht man direkt!
du brauchst nicht irgendeinen zu v1 senkrechten vektor, sondern einen, den man durch v1 und v2 kombinieren kann. sieh dir das Gram-Schmidtverfahren noch mal an, im skript oder wiki http://de.wikipedia.org/wiki/Gram-Schmidtsches_Orthogonalisierungsverfahren
bei dir ist das ja nur 1 Schritt!
gruss leduart


Bezug
                
Bezug
Schmidt - Orthonormalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Mo 10.10.2011
Autor: perl

nun gut. ich stell die frage anders mit nem einfacheren bsp:

gesucht ist eine ONB zu den vektoren [mm] a_1 [/mm] =(-1 2) und [mm] a_2=(2 [/mm] 1)

1. Schritt Normalisieren von [mm] a_1 [/mm]
--> [mm] e_1= \bruch{1}{\wurzel{5}} \vektor{-1 \\ 2} [/mm]

2. Schritt Orthogonalisieren von [mm] a_2 [/mm]

b= [mm] a_2 [/mm] - < [mm] \bruch{1}{\wurzel{5}} \vektor{-1 \\ 2} [/mm] , [mm] a_2> \bruch{1}{\wurzel{5}} \vektor{-1 \\ 2} [/mm]


Hier ist mein problem < [mm] \bruch{1}{\wurzel{5}} \vektor{-1 \\ 2} [/mm] , [mm] a_2>, [/mm] denn

[mm] \bruch{1}{\wurzel{5}}(-1) [/mm] (2) + [mm] \bruch{1}{\wurzel{5}} [/mm] (2)(1)  =   0

oder  berechne ich das skalarprodukt falsch?

Bezug
                        
Bezug
Schmidt - Orthonormalbasis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Mo 10.10.2011
Autor: perl

heißt das, dass wenn ich 2 vektoren erwische, die eh schon orthogonal zu einander sind, entfällt die orthogonalisierung (da lösung der 2. vektor ist) und zur bestimmung einer ONB braucht nur noch der 2. Vektor auch normiert werden?

Bezug
                        
Bezug
Schmidt - Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Mo 10.10.2011
Autor: fred97


> nun gut. ich stell die frage anders mit nem einfacheren
> bsp:
>  
> gesucht ist eine ONB zu den vektoren [mm]a_1[/mm] =(-1 2) und [mm]a_2=(2[/mm]
> 1)
>  
> 1. Schritt Normalisieren von [mm]a_1[/mm]
>  --> [mm]e_1= \bruch{1}{\wurzel{5}} \vektor{-1 \\ 2}[/mm]

>  
> 2. Schritt Orthogonalisieren von [mm]a_2[/mm]
>  
> b= [mm]a_2[/mm] - < [mm]\bruch{1}{\wurzel{5}} \vektor{-1 \\ 2}[/mm] , [mm]a_2> \bruch{1}{\wurzel{5}} \vektor{-1 \\ 2}[/mm]
>  
>
> Hier ist mein problem < [mm]\bruch{1}{\wurzel{5}} \vektor{-1 \\ 2}[/mm]
> , [mm]a_2>,[/mm] denn
>
> [mm]\bruch{1}{\wurzel{5}}(-1)[/mm] (2) + [mm]\bruch{1}{\wurzel{5}}[/mm]
> (2)(1)  =   0
>  
> oder  berechne ich das skalarprodukt falsch?

Nein. Die Vektoren [mm] a_1 [/mm] und [mm] a_2 [/mm] sind schon orthogonal.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]