matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenRekursion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Rekursion
Rekursion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:25 Mi 16.04.2008
Autor: analysis3

Aufgabe
Bestimme die Folge (a(n)) [mm] n\ge1 [/mm] mit a(1) = 1 und der Rekursion

a(n+1) = 1+a(n) + a(n-1) - a(n-3) - a(n-4) + a(n-6) + a(n-7) - a(n-9) - a(n-10)++ -- [mm] \pm [/mm] a(2) bzw. a(1)

für [mm] n\ge1. [/mm] (Beachte, dass von a(n) abwärts jeder dritte Term „fehlt“ und dazwischen die Vorzeichen ++–– abwechseln.)
Verwende die erzeugende Funktion:
[mm] \summe_{n\ge1}^{} [/mm] a(n) * [mm] z^n [/mm]

Mein Problem ist dass ich schon beim anschreibn der summe meine probleme bekomme:

Ich habe mir es so überlegt dass sich ja alle 6 terme immer wieder das selbe wiederholt.

damit hätte ich :

1+ [mm] [\summe_{i=0}^{(n/6) - 1} [/mm] a(n-6*i)] + [mm] [\summe_{i=0}^{(n/6) - 1/6} [/mm] a(n-1-6*i)] - [mm] [\summe_{i=0}^{(n/6) - (1/2)} [/mm] a(n-3-6*i)] - [mm] [\summe_{i=0}^{(n/6) - (2/3)} [/mm] a(n-4-6*i)]

aber ich denke dass das so zu kompliziert ist!!

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rekursion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Mi 16.04.2008
Autor: abakus


> Bestimme die Folge (a(n)) [mm]n\ge1[/mm] mit a(1) = 1 und der
> Rekursion
>  
> a(n+1) = 1+a(n) + a(n-1) - a(n-3) - a(n-4) + a(n-6) +
> a(n-7) - a(n-9) - a(n-10)++ -- [mm]\pm[/mm] a(2) bzw. a(1)
>  
> für [mm]n\ge1.[/mm] (Beachte, dass von a(n) abwärts jeder dritte
> Term „fehlt“ und dazwischen die Vorzeichen ++––
> abwechseln.)
>  Verwende die erzeugende Funktion:
>  [mm]\summe_{n\ge1}^{}[/mm] a(n) * [mm]z^n[/mm]
>  Mein Problem ist dass ich schon beim anschreibn der summe
> meine probleme bekomme:
>  
> Ich habe mir es so überlegt dass sich ja alle 6 terme immer
> wieder das selbe wiederholt.
>  
> damit hätte ich :
>  
> 1+ [mm][\summe_{i=0}^{(n/6) - 1}[/mm] a(n-6*i)] +
> [mm][\summe_{i=0}^{(n/6) - 1/6}[/mm] a(n-1-6*i)] -
> [mm][\summe_{i=0}^{(n/6) - (1/2)}[/mm] a(n-3-6*i)] -
> [mm][\summe_{i=0}^{(n/6) - (2/3)}[/mm] a(n-4-6*i)]
>  
> aber ich denke dass das so zu kompliziert ist!!
>  
> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bilde doch ausgehend von a(1)=1 und der Bildungsvorschrift mal die ersten 10 Glieder. Vielleicht ergibt sich ja was ganz einfach zu erkennendes.
Viele Grüße
Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]