matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisRechnen in C
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Rechnen in C
Rechnen in C < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen in C: Spezielle komplexe Funktion
Status: (Frage) beantwortet Status 
Datum: 14:41 Mi 03.06.2015
Autor: Jura86

Aufgabe 1
[mm] f:\IC\to \IC, [/mm] f(z) [mm] :=\bruch{z}{|z|+a} [/mm]
in fixiertes a>0
Zeigen Sie dass f in den in den Einheitskreis abbildet, d.h.



f(C) ⊂B :=z ∈C |z| < 1

Aufgabe 2
Berechnen sie die Umkehrfunktion.
f^-1 : [mm] B\to\IC [/mm]
Dabei darf angenommen werden das f überhaupt invertierbar ist.

Aufgabe 3
Veranschaulichen Sie die Funktion anhand von Polarkoordinaten.
[mm] f:\IC\to\ICf(z) :=\bruch{z}{|z|+a} [/mm]

Wie kann ich so eine Funktion in die Polarkoordinaten einzeichnen ?
Wie berechne ich die Umkehrfunktion ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Rechnen in C: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Mi 03.06.2015
Autor: Ladon

Hallo Jura86,

[willkommenmr]
Ad 1:
Wird klar in Polarkoordinaten: Jedes [mm] $x+iy\in \IC$ [/mm] lässt sich eindeutig darstellen als [mm] $x=r\cos(\varphi)$ [/mm] und [mm] $y=r\sin(\varphi)$ [/mm] mit [mm] $\varphi\in[0,2\pi[$ [/mm] und [mm] $r\in\IR$. [/mm]
[mm] $\Rightarrow |f(r\cos(\varphi)+ir\sin(\varphi))|=|\frac{r(\cos(\varphi)+i\sin(\varphi))}{r+a}|=|\frac{r}{r+a}|<1$ [/mm] für $a>0$.
Natürlich kannst du auch über die Eulersche Identität [mm] z\in \IC [/mm] durch [mm] $re^{i\varphi}$ [/mm] darstellen.

Ad 3: Wichtig ist bei der Darstellung der Funktion in Polarkoordinaten, dass der Anteil [mm] $\cos(\varphi)+i\sin(\varphi)$ [/mm] durch den Winkel [mm] $\varphi$ [/mm] die Richtung angibt. Der Faktor [mm] $\frac{r}{r+a}$ [/mm] gibt an, mit welcher Länge der Punkt vom Ursprung entfernt ist. Dieser Abstand ist für jedes $a>0$ umso näher an $1$ (dem Rand des Einheitskreises), je größer $r$ wird und umso näher am Wert $0$, je näher $r$ an $0$ ist.
Es ist also [mm] $Im(f)=\{\frac{r}{r+a}(\cos(\varphi)+i\sin(\varphi))\in\IC|r\in\IR,\varphi\in[0,2\pi[\}=\{z\in\IC||z|<1\}=D^2\subseteq \IC$. [/mm]

MfG
Ladon

Bezug
                
Bezug
Rechnen in C: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 So 07.06.2015
Autor: Jura86

Danke Ladon !!
Man merkt du kennst dich gut aus !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]