matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesRayleigh-Ritz Verfahren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Rayleigh-Ritz Verfahren
Rayleigh-Ritz Verfahren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rayleigh-Ritz Verfahren: Aufgaben
Status: (Frage) überfällig Status 
Datum: 13:12 Mo 16.06.2008
Autor: chipbit

Aufgabe
Es sei [mm] (V,<\cdot ,\cdot [/mm] >) ein unitärer Vektorraum und L:V [mm] \to [/mm] V selbstadjungiert. Wir definieren für v [mm] \in [/mm] V\ {0} den sogenannten Rayleigh-Ritz-Quotienten f(v)=<v,Lv>/<v,v,>. Sei [mm] S=\{v\inV| |v|=1\} [/mm] die Sphäre und [mm] f|_S [/mm] die Einschränkung von f auf S. Zeigen Sie:

Das Minimum [mm] v_m \in [/mm] S von [mm] f|_S [/mm] und das Maximum [mm] v_M \inS [/mm] von [mm] f|_S [/mm] sind Eigenvektoren von L. Sind [mm] \lambda_m [/mm] und [mm] \lambda_M [/mm] jeweils die zu [mm] v_m [/mm] und [mm] v_M [/mm] gehörigen Eigenwerte, so ist [mm] \lambda_m [/mm] minimaler und [mm] \lambda_M [/mm] maximaler Eigenwert von L.

Hallo,
kennt von euch jemand das Rayleigh-Ritz Verfahren und könnte mir das vielleicht nochmal erklären? Komme mit der Aufgabe nicht zurecht.

        
Bezug
Rayleigh-Ritz Verfahren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:20 Di 17.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]