matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenRandwertproblem DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Randwertproblem DGL
Randwertproblem DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randwertproblem DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 So 20.12.2009
Autor: pandabaer

Aufgabe
Lösen Sie die Randwertaufgaben
(a) x''(t) = 1, x' (0) = 0, x' (1) = 2,
(b) x''(t) = 1, x' (0) = 0, x' (1) = 1.
(c) x''(t) − 2x' (t) = 0, x(0) = 1, x(1) = 0

Hallo,  
ich denke aufgabe b habe ich schon gelöst:

x'(t)= t >> x'(0)=0 >> x'(1)= 1
>>x(t)= [mm] \bruch{t^2}{2} [/mm]

aufgabe a) wäre ja eigentlich fast der selbe ansatz, aber bei x'(1) = 2 gehts nicht...ich komme nicht drauf..

aufgabe c) : wie soll ich hier ansetzen, auch einfach im kopf integrieren oder gibt es da eine bestimmte vogehensweise?

grüße

        
Bezug
Randwertproblem DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 So 20.12.2009
Autor: pandabaer

ich habe jetzt einfach mal hochintegriert und das so zusammengefasst:

aufgabe a)

x''(t)=1 >> x'(t) = t + C >> x'(0) = 0 + C mit C=0 und x'(1) = 1+ C mit C=1

>> ist nicht eindeutig lösbar

aufgabe c)

das charakteristische polynom gebildet: [mm] \lambda^2 -2\lambda [/mm] = 0
damit die eigenwerte: [mm] \lambda_1 [/mm] = 0 und [mm] \lambda_2 [/mm] = 2
damit die lösungen über exponentialansatz: [mm] x_1= [/mm] e^0t=1 und [mm] x_2= [/mm] e^2t
die allgemeine lösung ist dann: x(t)= A*1 + B* e^2t

für das RWP1 gilt dann:   x(0) = A + B = 1
für RWP2 somit: x(1) = A + [mm] B*e^2 [/mm] = 0

damit wäre die lösung: A= 1 + [mm] \bruch{1}{e^2 - 1 } [/mm]  B= - [mm] \bruch{1}{e^2 - 1 } [/mm]

damit: x(t)= 1 + [mm] \bruch{1}{e^2 - 1 } [/mm] - [mm] \bruch{1}{e^2 - 1 }*e^2t [/mm]

kann das so stimmen?

Bezug
                
Bezug
Randwertproblem DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 20.12.2009
Autor: MathePower

Hallo pandabaer,

> ich habe jetzt einfach mal hochintegriert und das so
> zusammengefasst:
>  
> aufgabe a)
>
> x''(t)=1 >> x'(t) = t + C >> x'(0) = 0 + C mit C=0 und
> x'(1) = 1+ C mit C=1
>  
> >> ist nicht eindeutig lösbar


Stimmt. [ok]


>  
> aufgabe c)
>  
> das charakteristische polynom gebildet: [mm]\lambda^2 -2\lambda[/mm]
> = 0
> damit die eigenwerte: [mm]\lambda_1[/mm] = 0 und [mm]\lambda_2[/mm] = 2
>  damit die lösungen über exponentialansatz: [mm]x_1=[/mm] e^0t=1
> und [mm]x_2=[/mm] e^2t
>  die allgemeine lösung ist dann: x(t)= A*1 + B* e^2t
>  
> für das RWP1 gilt dann:   x(0) = A + B = 1
> für RWP2 somit: x(1) = A + [mm]B*e^2[/mm] = 0
>  
> damit wäre die lösung: A= 1 + [mm]\bruch{1}{e^2 - 1 }[/mm]  B= -
> [mm]\bruch{1}{e^2 - 1 }[/mm]
>  
> damit: x(t)= 1 + [mm]\bruch{1}{e^2 - 1 }[/mm] - [mm]\bruch{1}{e^2 - 1 }*e^2t[/mm]
>  
> kann das so stimmen?


Ja,  Aufgabe c) stimmt auch. [ok]


Gruss
MathePower

Bezug
        
Bezug
Randwertproblem DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 So 20.12.2009
Autor: MathePower

Hallo pandabaer,


> Lösen Sie die Randwertaufgaben
>  (a) x''(t) = 1, x' (0) = 0, x' (1) = 2,
>  (b) x''(t) = 1, x' (0) = 0, x' (1) = 1.
>  (c) x''(t) − 2x' (t) = 0, x(0) = 1, x(1) = 0
>  Hallo,  
> ich denke aufgabe b habe ich schon gelöst:
>  
> x'(t)= t >> x'(0)=0 >> x'(1)= 1
>  >>x(t)= [mm]\bruch{t^2}{2}[/mm]


Stimmt. [ok]


>  
> aufgabe a) wäre ja eigentlich fast der selbe ansatz, aber
> bei x'(1) = 2 gehts nicht...ich komme nicht drauf..
>  
> aufgabe c) : wie soll ich hier ansetzen, auch einfach im
> kopf integrieren oder gibt es da eine bestimmte
> vogehensweise?


Diese Fragen hast Du Dir in diesem Artikel schon beantwortet.


>
> grüße


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]