matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesPrimitiv Rekursive Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Primitiv Rekursive Funktionen
Primitiv Rekursive Funktionen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primitiv Rekursive Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 So 30.09.2012
Autor: SamuraiApocalypse

Aufgabe
Definiere die folgenden Funktionen rekursiv mit Hilfe der Nachfolgerfunktion $s: [mm] \IN \rightarrow \IN \backslash \{0\}$ [/mm] (s(0) = 1, s(1)=2 ... ).

Aufgabe1:

$ [mm] +:\IN \times \IN \rightarrow \IN$ [/mm]

$ [mm] p:\IN \times \IN \rightarrow \IN$ [/mm] (Potenzfunktion)

Zu Aufgabe1:

Die Addition ist üblicherweise so definiert:

n + 0 := n
n + s(m) := s (n+m)

Ich habe es mit dem Beispiel 2+2 überprüft und es stimmt.

2 + 2 = 2 + s(1) = s (2+1) = s(2 + s(0)) = s(s(2)) = 4

Doch wenn ich die Addition über die Funktionen definieren will, was ja die Aufgabe verlangt, habe ich Schwierigkeiten.

addition (n,0) = n
addition (n,s(m)) = n + s(m) = n + m +1 = s(addition(n,m))

Wenn ich nun das Beispiel 2+2 mit meinem Rekursionsschema ausrechnen möchte, bekomme ich nicht 4.

s(addition(2,2)) = s (2+2)  = s(2+s(1)) = s(s(2+1)) = s(s(s(2+0))) = s(s(s(2))) = 5.

Nun weiss ich nicht wie ich das beheben kann. Vielen Dank für eure Hilfe!

SA

        
Bezug
Primitiv Rekursive Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 So 30.09.2012
Autor: leduart

Hallo
was ist denn nicht richtig, der Nachfolger von 2+2=4 ist doch 5, vielleicht präzisierst du deine Frage wo genau das problem liegt.
Gruss leduart

Bezug
                
Bezug
Primitiv Rekursive Funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:53 So 30.09.2012
Autor: SamuraiApocalypse

Ich habe nun die Addition rekursiv über die Nachfolgerfunktion bestimmt. Ich möchte aber nicht das Nachfolgende Glied der Addition sonder die tatsächliche Addition zweier Zahlen rekursiv definieren.

Nun ist meine Frage, ob man die Addition nur über die Nachfolgerfunktion rekursiv definieren kann.

Bezug
                        
Bezug
Primitiv Rekursive Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 02.10.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]