matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenPartielle Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Partielle Ableitung
Partielle Ableitung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Hilfe zur Lösung
Status: (Frage) beantwortet Status 
Datum: 12:14 So 20.06.2010
Autor: aushamburg

Aufgabe
Sei [mm] F'(K,L,M)=AK^{a}L^{b}M^{c} [/mm]

Zeigen Sie, dass KF'K+LF'L+MF'M=(a+b+c)F

Hey,

ich habe für de partiellen Ableitungen zusammen Folgendes raus:

[mm] AaK^{a-1}L^{b}M^{c}+AK^{a}bL^{b-1}M^{c}+AK^{a}L^{b}cM^{c-1} [/mm]

Ist das richtig??Und wie geht es dann weiter???

Viele Grüße Anna

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 So 20.06.2010
Autor: dormant

Hi!

> Sei [mm]F'(K,L,M)=AK^{a}L^{b}M^{c}[/mm]
>  
> Zeigen Sie, dass KF'K+LF'L+MF'M=(a+b+c)F
>  Hey,
>  
> ich habe für de partiellen Ableitungen zusammen Folgendes
> raus:
>  
> [mm]AaK^{a-1}L^{b}M^{c}+AK^{a}bL^{b-1}M^{c}+AK^{a}L^{b}cM^{c-1}[/mm]
>  
> Ist das richtig??Und wie geht es dann weiter???

Richtig. Nun musst du partiellen Ableitungen mit der jeweiligen Variablen multiplizieren (K*F'K + ...) und dann hast du KF'K+LF'L+MF'M=aF+bF+cF.
  

> Viele Grüße Anna

Grüße,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]