matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieParameterabhängiges Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Parameterabhängiges Integral
Parameterabhängiges Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterabhängiges Integral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:44 Sa 12.01.2008
Autor: Jana85

Hallo, wir sollen als Aufgabe ein parameterabhängiges Integral berechnen,

das Integral lautet:

[mm] \integral_{0}^{\pi}{f(x,t) dx} [/mm]

Mit f(x,t) = [mm] ln(1+t^{2}-2t*cos(x)) [/mm]

für |t| < 1. (Überprüfuen Sie zunächst, auf welchem Intervall die Funktion f(x,t) stetig partiell differenzierbar ist. Betrachten Sie dann die Ableitung [mm] \bruch{\partial f}{\partial t}und [/mm] verwenden Sie eine geeignete Substitution [mm] (s=tan(\bruch{x}{2}) [/mm]

Also, das Integral läuft ja jetzt nun über x, also kann ich doch t als eine bel. Zahl ansehen und erstmal nicht beachten, nun weiß ich aber leider nicht, wie ich auf die Stammfunktion von ln(a+b*cosx) gelange... Hab schon einiges probiert, aber komme nicht drauf...

Wie kann ich eigentlich ein Intervall angeben, indem f stetig partiell diffbar ist?

Ich habe mir mal die beiden partiellen Ableitungen ausgerechnet und da der Nenner bei beiden gleich war, einfach auf den Nenner geschaut und dieser ist genau dann 0 wenn x = arccos( [mm] \bruch{1+t^{2}}{2t} [/mm] ) ist, also genau dann ist sie auch nicht stetig, da dort eine Lücke ist, aber wie kann ich dies in einem Intervall angeben?

Und wie kann ich die Substitution verwenden, die oben angegeben ist? Bei meiner Ableitung erhalte ich nirgends einen tangens...

HILFE... :-(

Grüße

Jana

        
Bezug
Parameterabhängiges Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Di 15.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]