matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperOrdnung vom Zentrum immer >1?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Ordnung vom Zentrum immer >1?
Ordnung vom Zentrum immer >1? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung vom Zentrum immer >1?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 So 14.11.2010
Autor: Lyrn

Hallo,
ich würde gerne wissen ob ich sagen kann dass die Ordnung vom Zentrum einer Gruppe größer als 1 ist.
Ich meine das schonmal gehört zu haben, aber ich finde gerade keinen Satz darüber in meinem Skript.

Also stimmt es dass die Ordnung vom Zentrum >1 ist? Wenn ja warum?

lg

        
Bezug
Ordnung vom Zentrum immer >1?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 So 14.11.2010
Autor: Gonozal_IX

Huhu,

sei [mm] $G=\{e\}$ [/mm] die Gruppe, die nur aus einem (neutralen) Element besteht.
Was ist Z(G) und welche Ordnung hat es?

MFG,
Gono.

Bezug
                
Bezug
Ordnung vom Zentrum immer >1?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 So 14.11.2010
Autor: Lyrn

Da [mm] Z_G \subseteq [/mm] G muss [mm] Z_G [/mm] die Ordnung 1 haben oder?

Bezug
                        
Bezug
Ordnung vom Zentrum immer >1?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 So 14.11.2010
Autor: Gonozal_IX

Hiho,

> Da [mm]Z_G \subseteq[/mm] G muss [mm]Z_G[/mm] die Ordnung 1 haben oder?

Nunja, du brauchst dafür auch noch, dass [mm] $Z_G \not= \emptyset$ [/mm] immer gilt.
Es gilt ja sogar [mm] $\{e\} \subseteq Z_G \subseteq [/mm] G$ und damit in diesem Fall [mm] $Z_G [/mm] = G$ :-)

MFG,
Gono.


Bezug
                                
Bezug
Ordnung vom Zentrum immer >1?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 So 14.11.2010
Autor: Lyrn

Mhhh das hilft mir bei meinem Beweis nicht weiter :(
ich versuche zu zeigen dass:
Jede Gruppe der Ordnung [mm] p^2 [/mm] ist abelsch (p Primzahl).

Ich betrachte dabei also das Zentrum [mm] Z_G, [/mm] dessen Ordnung ein Teiler von [mm] p^2 [/mm] ist. Also kann [mm] |Z_G|=1, [/mm] p, [mm] p^2 [/mm] sein.

Kann ich den Fall [mm] |Z_G|=1 [/mm] jetzt irgendwie ausschließen? Wenn das geht ist mein Beweis fertig, aber mit [mm] |Z_G|=1 [/mm] komm ich nicht zurecht

Bezug
                                        
Bezug
Ordnung vom Zentrum immer >1?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 So 14.11.2010
Autor: felixf

Moin!

> Mhhh das hilft mir bei meinem Beweis nicht weiter :(
>  ich versuche zu zeigen dass:
>  Jede Gruppe der Ordnung [mm]p^2[/mm] ist abelsch (p Primzahl).
>  
> Ich betrachte dabei also das Zentrum [mm]Z_G,[/mm] dessen Ordnung
> ein Teiler von [mm]p^2[/mm] ist. Also kann [mm]|Z_G|=1,[/mm] p, [mm]p^2[/mm] sein.
>  
> Kann ich den Fall [mm]|Z_G|=1[/mm] jetzt irgendwie ausschließen?
> Wenn das geht ist mein Beweis fertig, aber mit [mm]|Z_G|=1[/mm] komm
> ich nicht zurecht

Nun, entweder hattet ihr so ein Resultat fuer $p$-Gruppen (d.h. endliche Gruppen mit [mm] $p^n$ [/mm] Elementen), oder du musst es selber beweisen. Mit der Klassenformel kommst du hier etwa weiter.

LG Felix


Bezug
        
Bezug
Ordnung vom Zentrum immer >1?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 14.11.2010
Autor: felixf

Moin,

> ich würde gerne wissen ob ich sagen kann dass die Ordnung
> vom Zentrum einer Gruppe größer als 1 ist.

nein, bei allgemeinen Gruppen geht das nicht. Nimm eine []nicht-kommutative einfache Gruppe, etwa [mm] $A_4$. [/mm]

>  Ich meine das schonmal gehört zu haben, aber ich finde
> gerade keinen Satz darüber in meinem Skript.

Bei bestimmten Gruppen ist das so. Z.B. falls $|G| = [mm] p^n$ [/mm] ist mit $n [mm] \ge [/mm] 1$; dann ist $|Z(G)| [mm] \ge [/mm] p > 1$.

Schau mal nach so einer Aufgabe bzw. nach so einem Satz.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]