matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNullteiler eines Ringes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Nullteiler eines Ringes
Nullteiler eines Ringes < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullteiler eines Ringes: Definitionsfrage
Status: (Frage) beantwortet Status 
Datum: 20:04 Fr 01.05.2009
Autor: ChaoZz

Aufgabe
Definition: Elemente a,b eines Ringes mit a [mm] \not= [/mm] 0 ,b [mm] \not= [/mm] 0und a*b=0 heißen Nullteiler von R

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen, ich habe eine Frage zu obigen Definition.  Ich hab hier eine Aufgabe die ich auch soweit lösen konnte (Zeigen Sie, dass (R, +, *) einen kommutativen Ring mit Einselement bildet (hab ich soweit gemacht), der Nullteiler enthällt. (das fehlt mir) )

Nun wird auf R eine Addition erklärt durch.

* | a | b | c | d
-------------------
a | a | a | a | a
--------------------
b | a | b | c | d
-------------------
c | a  | c | a | c
-------------------
d | a | d | c | b

Um nun obigen Definition (Nullteiler) zu erfüllen, könnte ich lediglich c*c = 0 machen wenn c [mm] \not= [/mm] 0 ist, da durch alle anderen Kombinationen  [mm] \not= [/mm] 0 oder a [mm] \not= [/mm] 0 oder b [mm] \not= [/mm] 0 wären.

Wenn ich z.B. definiere a=0 b=1 c=2 d=3 dann ergibt sich folgende Verknüpfungstafel


* | 0 | 1 | 2 | 3
-------------------
0 | 0 | 0 | 0 | 0
--------------------
1 | 0 | 1 | 2 | 3
-------------------
2 | 0 | 2 | 0 | 2
-------------------
3 | 0 | 3 | 2 | 1

Wie man sieht würde nur 2*2=0 gehen, also c*c und nun meine Frage : Geht das? Ich meine, in der Definition steht a*b=0 somit denke ich, dass a und b zwei verschiedene Elemente sein müssten, was ja c*c ausschließt. Vielen Dank vorab.

        
Bezug
Nullteiler eines Ringes: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Fr 01.05.2009
Autor: felixf

Hallo!

> Definition: Elemente a,b eines Ringes mit a [mm]\not=[/mm] 0 ,b
> [mm]\not=[/mm] 0und a*b=0 heißen Nullteiler von R
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo zusammen, ich habe eine Frage zu obigen Definition.  
> Ich hab hier eine Aufgabe die ich auch soweit lösen konnte
> (Zeigen Sie, dass (R, +, *) einen kommutativen Ring mit
> Einselement bildet (hab ich soweit gemacht), der Nullteiler
> enthällt. (das fehlt mir) )
>  
> Nun wird auf R eine Addition erklärt durch.
>  
> * | a | b | c | d
> -------------------
>  a | a | a | a | a
> --------------------
>  b | a | b | c | d
>  -------------------
>  c | a  | c | a | c
>  -------------------
>  d | a | d | c | b
>
> Um nun obigen Definition (Nullteiler) zu erfüllen, könnte
> ich lediglich c*c = 0 machen wenn c [mm]\not=[/mm] 0 ist, da durch
> alle anderen Kombinationen  [mm]\not=[/mm] 0 oder a [mm]\not=[/mm] 0 oder b
> [mm]\not=[/mm] 0 wären.

Genau.

> Wenn ich z.B. definiere a=0 b=1 c=2 d=3 dann ergibt sich
> folgende Verknüpfungstafel
>  
>
> * | 0 | 1 | 2 | 3
> -------------------
>  0 | 0 | 0 | 0 | 0
> --------------------
>  1 | 0 | 1 | 2 | 3
>  -------------------
>  2 | 0 | 2 | 0 | 2
>  -------------------
>  3 | 0 | 3 | 2 | 1
>
> Wie man sieht würde nur 2*2=0 gehen, also c*c und nun meine
> Frage : Geht das? Ich meine, in der Definition steht a*b=0
> somit denke ich, dass a und b zwei verschiedene Elemente
> sein müssten, was ja c*c ausschließt. Vielen Dank vorab.

In der Definition steht nicht, dass $a [mm] \neq [/mm] b$ sein muss. Es steht nur, dass $a [mm] \neq [/mm] b$ sein darf. Insofern ist $a = b = 2$ voellig OK.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]