matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisNormen in \IR^{2}
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Normen in \IR^{2}
Normen in \IR^{2} < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normen in \IR^{2}: Frage
Status: (Frage) beantwortet Status 
Datum: 23:12 Di 03.05.2005
Autor: Mikke

Hallo zusammen!!
ich hab da mal ne frage und zwar komme ich bei folgender aufgabe überhaupt nicht weiter...
ich soll zeigen, dass

[mm] \parallel(x,y) \parallel [/mm] =  [mm] \wurzel{ \alpha^{2}x^{2} + \beta^{2}y^{2} } [/mm] mit [mm] \alpha, \beta \in \IR\setminus\{0\} [/mm]   Normen in  [mm] \IR^{2} [/mm] sind.

Wie kann ich hier anfangen? hab keine idee...wär schön wenn mir wer helfen könnte...
Mfg Mikke

        
Bezug
Normen in \IR^{2}: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Di 03.05.2005
Autor: Plantronics


> Hallo zusammen!!
>  ich hab da mal ne frage und zwar komme ich bei folgender
> aufgabe überhaupt nicht weiter...
>  ich soll zeigen, dass
>
> [mm]\parallel(x,y9 \parallel[/mm] =  [mm]\wurzel{ \alpha^{2}x^{2} + \beta^{2}y{2} }[/mm]
> mit [mm]\alpha, \beta \in \IR\{0}[/mm]   Normen in  [mm]\IR^{2}[/mm] sind.
>  
> Wie kann ich hier anfangen? hab keine idee...wär schön wenn
> mir wer helfen könnte...

Nagut, dann hier mal ein kleiner Denkanstoß:
Eine Norm muss folgende 3 Eigenschaften erfüllen
1., Definitheit ||x||=0 <=> x=0
2., Homoginität [mm] ||$\lambda$ [/mm] x|| = [mm] |$\lambda$| [/mm] ||x||
und 3., Dreiecksungleichung: ||x+y|| <= ||x||+||y||

Hoffe es ist klar, sonst poste einfach erneut.
mfg,
   Martin

>  Mfg Mikke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]