matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieModulo Beweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Modulo Beweise
Modulo Beweise < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulo Beweise: richtig oder nicht ?
Status: (Frage) beantwortet Status 
Datum: 17:59 Mi 29.04.2009
Autor: Malk

Aufgabe
Für n [mm] \in \N [/mm] sei [n] der Rest der Division von n durch m.
ZZ :1) [mm][[a]+[b]]=[a+b][/mm]
      2) [mm][[a]*[b]]=[a*b][/mm]

Zu1:
[mm] [a] + [b] \equiv_m a+b \qquad |-[a] [/mm]
[mm] \gdw [b] \equiv_m a+ b - [a] \qquad |-[b] [/mm]
[mm] \gdw 0 \equiv_m a+ b - [a] - [b] [/mm]
[mm] \gdw 0 \equiv_m a-[a] + b-[b] [/mm]

Mit
[mm] a \equiv_m [a] \gdw 0 \equiv_m a-[a] [/mm]
[mm] b \equiv_m [b] \gdw 0 \equiv_m b-[b] [/mm]

Ist
[mm] 0 \equiv_m 0 + 0 = 0 [/mm]

Sollte richtig sein :D

Zu2:

Ist
[mm] a \equiv_m [a] \gdw 1 \equiv_m \left( \bruch{a}{[a]} \right) [/mm]
richtig ?

Dann komme ich durch Umformungen auf

[mm] 1 \equiv_m \left( \bruch{a}{[a]} \right)* \left( \bruch{b}{[b]} \right) [/mm]
[mm] 1 \equiv_m 1 *1 = 1 [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Modulo Beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Do 30.04.2009
Autor: djmatey

Hallo,

schreibe doch einfach für a,b [mm] \in \IN_0 [/mm]
a = [mm] k_1 [/mm] * m + [mm] r_1 [/mm]
b = [mm] k_2 [/mm] * m + [mm] r_2 [/mm]
mit [mm] k_1,k_2 \in \IN_0 [/mm]
[mm] r_1 [/mm] bzw. [mm] r_2 [/mm] sind dann die Reste von a bzw. b.

a*b = [mm] (k_1*m+r_1)(k_2*m+r_2) [/mm]
       = [mm] k_1 k_2 [/mm] * [mm] m^2 [/mm] + [mm] k_1 r_2 [/mm] m + [mm] k_2 r_1 [/mm] m [mm] +r_1 r_2 [/mm]
also
[mm] [a*b]=[r_1*r_2] [/mm]

Und
[a]= [mm] r_1 [/mm]
[b]= [mm] r_2 [/mm]
also
[mm] [[a][b]]=[r_1*r_2] [/mm]

und somit
MBa][b = [a*b]

LG djmatey

Bezug
                
Bezug
Modulo Beweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Di 05.05.2009
Autor: Malk

Danke. Der Weg ist besser.

a [mm] \equiv_m [/mm] [a] [mm] \gdw [/mm] 1 [mm] \equiv_m \left( \bruch{a}{[a]} \right) [/mm] ist falsch.

Bsp.

a=8
m=5
[a]=3

[mm] \left( \bruch{a}{[a]} \right) \equiv_5 [/mm] 2

2 [mm] \equiv_5 [/mm] 1 ist wohl falsch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]