matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMessbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Messbarkeit
Messbarkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit: Ansatz
Status: (Frage) beantwortet Status 
Datum: 01:28 Mi 16.03.2011
Autor: bedburger84

Aufgabe
[Dateianhang nicht öffentlich]


Mir fehlt hier völlig ein Ansatz. Ich weiß, dass stetige Funktionen zum Beipspiel messbar sind, diese Funktion ist jedoch nicht stetig.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Mi 16.03.2011
Autor: fred97

Ich nehme an [mm] \IR' [/mm] ist = [mm] $\IR \cup \{\infty, - \infty\}$. [/mm] Wenn das so ist, so ist

              $ [mm] 1_{(- \infty,0]}$ [/mm]  messbar (warum ?).

Was weißt Du über Produkte und Summen messbarer Funktionen ?

FRED

Edit: ich glaube eher, dass [mm] $\IR'=\IR^1= \IR$ [/mm] ist. Stimmts ?

Bezug
                
Bezug
Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:12 Mi 16.03.2011
Autor: bedburger84

Dass diese auch wieder messbar sind. Das reicht also als Begründung. Dass die Funktion als Summe messbarer Größen wieder messbar ist?

Bezug
                        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Mi 16.03.2011
Autor: fred97


> Dass diese auch wieder messbar sind. Das reicht also als
> Begründung. Dass die Funktion als Summe messbarer Größen
> wieder messbar ist?

Mir würde das reichen.

FRED


Bezug
                                
Bezug
Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:20 Mi 16.03.2011
Autor: bedburger84

Und wie zeige ich dann, dass |x| messbar ist? Oder [mm] 2^x*1_{(\infty,0)}(x)? [/mm]

Bezug
                                        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mi 16.03.2011
Autor: fred97


> Und wie zeige ich dann, dass |x| messbar ist?

|x| ist stetig


> Oder
> [mm]2^x*1_{(\infty,0)}(x)?[/mm]  


[mm] 2^x [/mm] ist stetig.

[mm] 1_{(-\infty,0)} [/mm]  ist messbar, weil (- [mm] \infty,0) [/mm]  messbar ist.


FRED


Bezug
                                                
Bezug
Messbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:23 Mi 16.03.2011
Autor: bedburger84

*Schleier vor den Augen verschwindet*

Danke schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]