matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisMengen komplexer Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Mengen komplexer Zahlen
Mengen komplexer Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen komplexer Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Di 09.05.2006
Autor: blacklc2

Aufgabe
Skizzieren Sie die folgenden Mengen komplexer Zahlen:

[mm] \{z \in \IC : |z-1-i|=2|z+1+i| \} [/mm]

Hallo, da bin ich mal wieder... :-)

Ihr würdet mir super helfen wenn ihr mir mal einen Ansatz geben könntet wie man an diesen Aufgabentyp richtig rangeht...

Danke dafür schonmal, habt mir bei der letzten Aufg. schon prima geholfen

mfg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Mengen komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Di 09.05.2006
Autor: martzo

Hallo!

Beschrieben wird offenbar die Punktmenge aller komplexen Zahlen z, deren Abstand zu 1+i genau doppelt so groß ist wie ihr Abstand zu -1-i.

Das kann man sich jetzt natürlich überlegen (einfach Punkte einzeichnen und draufschauen), oder - wenn man es nicht sieht - ausrechnen:

Dazu setz einfach mal z=x+iy, wobei a und b reelle Zahlen sind. Erst fasst du Real- und Imaginärteile zusammen, dann bestimmst du den Betrag (Wenn [mm]c=a+ib[/mm] eine komplexe Zahl ist, gilt [mm]|c|=\sqrt{a^2+b^2}[/mm]). Jetzt löst du nur noch die Gleichung nach y auf und erhälst eine Funktion, die die gewünschte Punktmenge beschreibt.

Viele Grüße,

Martzo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]