matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitMenge Stetigkeitspunkte?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Menge Stetigkeitspunkte?
Menge Stetigkeitspunkte? < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge Stetigkeitspunkte?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Mi 07.05.2014
Autor: elduderino

Aufgabe
Bestimmen Sie die Menge der Stetigkeitspunkte der folgenden Abbildungen

[mm] f(x,y)=\begin{cases} xycos \bruch{1}{x^2}+\bruch{(y+1)sin(x)}{x}, & \mbox{für } x \mbox{ /not=0} \\ 0, & \mbox{für } x \mbox{ =0} \end{cases} [/mm]

[mm] g(x,y)=\begin{cases} arctan \bruch{xy^2}{x^2+y^4} , & \mbox{für } (x,y) \mbox{/not=(0,0)} \\ 0, & \mbox{für } (x,y) \mbox{=0} \end{cases} [/mm]

Ich fang mal mit f(x,y) an.

Als Komposition stetiger Funktionen [mm] (\bruch{1}{x^{2}} [/mm] ist stetig, da x [mm] \not=0) [/mm] ist f auf [mm] {{(x,y)\in \IR^{2} | x \not=0}} [/mm] stetig.

Ich würde als nächstes eine Fallunterscheidung machen wollen, erstmal [mm] y_{0}=0 [/mm] setzen und den Limes bilden. Und genau da fangen die Probleme an, lass ich x und y gegen 0 laufen, oder nur eins von beiden?

Grüße, Enno

        
Bezug
Menge Stetigkeitspunkte?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Mi 07.05.2014
Autor: leduart

Hallo
in einer [mm] \delta [/mm] Umgebung von (0,0) muss |f|< epsilon sein für alle x,y in der Umgebung.  also müssen beide gegen 0 gehen. sie dir erst mal den GW von sin(x)/x für x gegen 0 an, dann bist du mit f schon fast fertig.
Gruß leduart

Bezug
                
Bezug
Menge Stetigkeitspunkte?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Mi 07.05.2014
Autor: elduderino

Der Grenzwert von [mm] \bruch{sin(x)}{x} [/mm] für x->0 sollte 1 sein. Wenn ich mit l'Hospital ableite, hab ich [mm] \bruch{cos(x)}{1}, [/mm] also cos(0) also 1.
Ich nehme also an, dass durch das Wegfallen von y im Zähler nur noch quasi [mm] \bruch{(0+1)*sin(x)}{x} [/mm] bleibt, welches den Limes von 1 hat. Der erste Term sollte wegfallen wegen der Multiplikation richtig?

Bezug
                        
Bezug
Menge Stetigkeitspunkte?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mi 07.05.2014
Autor: fred97


> Der Grenzwert von [mm]\bruch{sin(x)}{x}[/mm] für x->0 sollte 1
> sein. Wenn ich mit l'Hospital ableite, hab ich
> [mm]\bruch{cos(x)}{1},[/mm] also cos(0) also 1.

Ja, es gilt [mm] \bruch{sin(x)}{x} \to [/mm] 1  für x [mm] \to [/mm] 0.


>  Ich nehme also an, dass durch das Wegfallen von y im
> Zähler nur noch quasi [mm]\bruch{(0+1)*sin(x)}{x}[/mm] bleibt,
> welches den Limes von 1 hat. Der erste Term sollte
> wegfallen wegen der Multiplikation richtig?

Ja, dann hast Du für x [mm] \ne [/mm] 0:

f(x,0)= [mm] \bruch{sin(x)}{x} \to [/mm] 1 [mm] \ne [/mm] 0=f(0,0)  für x [mm] \to [/mm] 0.

Und das bedeutet ?

FRED

  


Bezug
                                
Bezug
Menge Stetigkeitspunkte?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:48 Mi 07.05.2014
Autor: elduderino

Das bedeutet, dass f unstetig ist im Punkt (0,0), wenn ich nicht irre. Reicht das so als Antwort, oder muss das ganze nochmal formal aufgeschrieben werden? Heißt das auch, dass es keine Stetigkeitspunkte gibt, oder sind alle Punkte außer (0,0) Stetigkeitspunkte?

Bezug
                                        
Bezug
Menge Stetigkeitspunkte?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Mi 07.05.2014
Autor: elduderino

Niemand?

Bezug
                                        
Bezug
Menge Stetigkeitspunkte?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Mi 07.05.2014
Autor: fred97


> Das bedeutet, dass f unstetig ist im Punkt (0,0), wenn ich
> nicht irre.

Ja

>  Reicht das so als Antwort, oder muss das ganze
> nochmal formal aufgeschrieben werden?

Das hab ich doch für Dich getan !

> Heißt das auch, dass
> es keine Stetigkeitspunkte gibt, oder sind alle Punkte
> außer (0,0) Stetigkeitspunkte?

Oben hast Du ja schon richtig bemerkt: f ist auf $ [mm] \{(x,y)\in \IR^{2} | x \not=0\} [/mm] $ stetig.

Bleiben also noch die Punkte [mm] (0,y_0) \quad (y_0 \in \IR) [/mm]

Für [mm] y_0 \ne [/mm] -1 haben wir:

  [mm] f(x,y_0) \to y_0+1\ne 0=f(0,y_0) [/mm]  für x [mm] \to [/mm] 0

(begründe das !)

Das bedeutet: f ist in [mm] (0,y_0) [/mm] nicht stetig , falls [mm] y_0 \ne [/mm] -1 ist.

Damit Du auch was zu tun hast: ist f in (0,-1) stetig oder nicht ?

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]